This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Reverse closure for inverse relations. (Contributed by Zhi Wang, 14-Nov-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | invrcl.n | ⊢ 𝑁 = ( Inv ‘ 𝐶 ) | |
| invrcl.f | ⊢ ( 𝜑 → 𝐹 ( 𝑋 𝑁 𝑌 ) 𝐺 ) | ||
| invrcl2.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | ||
| Assertion | invrcl2 | ⊢ ( 𝜑 → ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | invrcl.n | ⊢ 𝑁 = ( Inv ‘ 𝐶 ) | |
| 2 | invrcl.f | ⊢ ( 𝜑 → 𝐹 ( 𝑋 𝑁 𝑌 ) 𝐺 ) | |
| 3 | invrcl2.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | |
| 4 | df-br | ⊢ ( 𝐹 ( 𝑋 𝑁 𝑌 ) 𝐺 ↔ 〈 𝐹 , 𝐺 〉 ∈ ( 𝑋 𝑁 𝑌 ) ) | |
| 5 | 2 4 | sylib | ⊢ ( 𝜑 → 〈 𝐹 , 𝐺 〉 ∈ ( 𝑋 𝑁 𝑌 ) ) |
| 6 | 1 2 | invrcl | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) |
| 7 | eqid | ⊢ ( Sect ‘ 𝐶 ) = ( Sect ‘ 𝐶 ) | |
| 8 | 3 1 6 7 | invffval | ⊢ ( 𝜑 → 𝑁 = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( ( 𝑥 ( Sect ‘ 𝐶 ) 𝑦 ) ∩ ◡ ( 𝑦 ( Sect ‘ 𝐶 ) 𝑥 ) ) ) ) |
| 9 | 8 | oveqd | ⊢ ( 𝜑 → ( 𝑋 𝑁 𝑌 ) = ( 𝑋 ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( ( 𝑥 ( Sect ‘ 𝐶 ) 𝑦 ) ∩ ◡ ( 𝑦 ( Sect ‘ 𝐶 ) 𝑥 ) ) ) 𝑌 ) ) |
| 10 | 5 9 | eleqtrd | ⊢ ( 𝜑 → 〈 𝐹 , 𝐺 〉 ∈ ( 𝑋 ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( ( 𝑥 ( Sect ‘ 𝐶 ) 𝑦 ) ∩ ◡ ( 𝑦 ( Sect ‘ 𝐶 ) 𝑥 ) ) ) 𝑌 ) ) |
| 11 | eqid | ⊢ ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( ( 𝑥 ( Sect ‘ 𝐶 ) 𝑦 ) ∩ ◡ ( 𝑦 ( Sect ‘ 𝐶 ) 𝑥 ) ) ) = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( ( 𝑥 ( Sect ‘ 𝐶 ) 𝑦 ) ∩ ◡ ( 𝑦 ( Sect ‘ 𝐶 ) 𝑥 ) ) ) | |
| 12 | 11 | elmpocl | ⊢ ( 〈 𝐹 , 𝐺 〉 ∈ ( 𝑋 ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( ( 𝑥 ( Sect ‘ 𝐶 ) 𝑦 ) ∩ ◡ ( 𝑦 ( Sect ‘ 𝐶 ) 𝑥 ) ) ) 𝑌 ) → ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) |
| 13 | 10 12 | syl | ⊢ ( 𝜑 → ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) |