This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A function is a bijection iff it is an isomorphism regarding the identity relation. (Contributed by AV, 9-May-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | isof1oidb | ⊢ ( 𝐻 : 𝐴 –1-1-onto→ 𝐵 ↔ 𝐻 Isom I , I ( 𝐴 , 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1of1 | ⊢ ( 𝐻 : 𝐴 –1-1-onto→ 𝐵 → 𝐻 : 𝐴 –1-1→ 𝐵 ) | |
| 2 | f1fveq | ⊢ ( ( 𝐻 : 𝐴 –1-1→ 𝐵 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) → ( ( 𝐻 ‘ 𝑥 ) = ( 𝐻 ‘ 𝑦 ) ↔ 𝑥 = 𝑦 ) ) | |
| 3 | 1 2 | sylan | ⊢ ( ( 𝐻 : 𝐴 –1-1-onto→ 𝐵 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) → ( ( 𝐻 ‘ 𝑥 ) = ( 𝐻 ‘ 𝑦 ) ↔ 𝑥 = 𝑦 ) ) |
| 4 | fvex | ⊢ ( 𝐻 ‘ 𝑦 ) ∈ V | |
| 5 | 4 | ideq | ⊢ ( ( 𝐻 ‘ 𝑥 ) I ( 𝐻 ‘ 𝑦 ) ↔ ( 𝐻 ‘ 𝑥 ) = ( 𝐻 ‘ 𝑦 ) ) |
| 6 | 5 | a1i | ⊢ ( ( 𝐻 : 𝐴 –1-1-onto→ 𝐵 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) → ( ( 𝐻 ‘ 𝑥 ) I ( 𝐻 ‘ 𝑦 ) ↔ ( 𝐻 ‘ 𝑥 ) = ( 𝐻 ‘ 𝑦 ) ) ) |
| 7 | ideqg | ⊢ ( 𝑦 ∈ 𝐴 → ( 𝑥 I 𝑦 ↔ 𝑥 = 𝑦 ) ) | |
| 8 | 7 | ad2antll | ⊢ ( ( 𝐻 : 𝐴 –1-1-onto→ 𝐵 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) → ( 𝑥 I 𝑦 ↔ 𝑥 = 𝑦 ) ) |
| 9 | 3 6 8 | 3bitr4rd | ⊢ ( ( 𝐻 : 𝐴 –1-1-onto→ 𝐵 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) → ( 𝑥 I 𝑦 ↔ ( 𝐻 ‘ 𝑥 ) I ( 𝐻 ‘ 𝑦 ) ) ) |
| 10 | 9 | ralrimivva | ⊢ ( 𝐻 : 𝐴 –1-1-onto→ 𝐵 → ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 I 𝑦 ↔ ( 𝐻 ‘ 𝑥 ) I ( 𝐻 ‘ 𝑦 ) ) ) |
| 11 | 10 | pm4.71i | ⊢ ( 𝐻 : 𝐴 –1-1-onto→ 𝐵 ↔ ( 𝐻 : 𝐴 –1-1-onto→ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 I 𝑦 ↔ ( 𝐻 ‘ 𝑥 ) I ( 𝐻 ‘ 𝑦 ) ) ) ) |
| 12 | df-isom | ⊢ ( 𝐻 Isom I , I ( 𝐴 , 𝐵 ) ↔ ( 𝐻 : 𝐴 –1-1-onto→ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 I 𝑦 ↔ ( 𝐻 ‘ 𝑥 ) I ( 𝐻 ‘ 𝑦 ) ) ) ) | |
| 13 | 11 12 | bitr4i | ⊢ ( 𝐻 : 𝐴 –1-1-onto→ 𝐵 ↔ 𝐻 Isom I , I ( 𝐴 , 𝐵 ) ) |