This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A function is a bijection iff it is an isomorphism regarding the universal class of ordered pairs as relations. (Contributed by AV, 9-May-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | isof1oopb | ⊢ ( 𝐻 : 𝐴 –1-1-onto→ 𝐵 ↔ 𝐻 Isom ( V × V ) , ( V × V ) ( 𝐴 , 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvex | ⊢ ( 𝐻 ‘ 𝑥 ) ∈ V | |
| 2 | fvex | ⊢ ( 𝐻 ‘ 𝑦 ) ∈ V | |
| 3 | 1 2 | opelvv | ⊢ 〈 ( 𝐻 ‘ 𝑥 ) , ( 𝐻 ‘ 𝑦 ) 〉 ∈ ( V × V ) |
| 4 | df-br | ⊢ ( ( 𝐻 ‘ 𝑥 ) ( V × V ) ( 𝐻 ‘ 𝑦 ) ↔ 〈 ( 𝐻 ‘ 𝑥 ) , ( 𝐻 ‘ 𝑦 ) 〉 ∈ ( V × V ) ) | |
| 5 | 3 4 | mpbir | ⊢ ( 𝐻 ‘ 𝑥 ) ( V × V ) ( 𝐻 ‘ 𝑦 ) |
| 6 | 5 | a1i | ⊢ ( 𝑥 ( V × V ) 𝑦 → ( 𝐻 ‘ 𝑥 ) ( V × V ) ( 𝐻 ‘ 𝑦 ) ) |
| 7 | opelvvg | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) → 〈 𝑥 , 𝑦 〉 ∈ ( V × V ) ) | |
| 8 | df-br | ⊢ ( 𝑥 ( V × V ) 𝑦 ↔ 〈 𝑥 , 𝑦 〉 ∈ ( V × V ) ) | |
| 9 | 7 8 | sylibr | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) → 𝑥 ( V × V ) 𝑦 ) |
| 10 | 9 | a1d | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) → ( ( 𝐻 ‘ 𝑥 ) ( V × V ) ( 𝐻 ‘ 𝑦 ) → 𝑥 ( V × V ) 𝑦 ) ) |
| 11 | 6 10 | impbid2 | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) → ( 𝑥 ( V × V ) 𝑦 ↔ ( 𝐻 ‘ 𝑥 ) ( V × V ) ( 𝐻 ‘ 𝑦 ) ) ) |
| 12 | 11 | adantl | ⊢ ( ( 𝐻 : 𝐴 –1-1-onto→ 𝐵 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) → ( 𝑥 ( V × V ) 𝑦 ↔ ( 𝐻 ‘ 𝑥 ) ( V × V ) ( 𝐻 ‘ 𝑦 ) ) ) |
| 13 | 12 | ralrimivva | ⊢ ( 𝐻 : 𝐴 –1-1-onto→ 𝐵 → ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ( V × V ) 𝑦 ↔ ( 𝐻 ‘ 𝑥 ) ( V × V ) ( 𝐻 ‘ 𝑦 ) ) ) |
| 14 | 13 | pm4.71i | ⊢ ( 𝐻 : 𝐴 –1-1-onto→ 𝐵 ↔ ( 𝐻 : 𝐴 –1-1-onto→ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ( V × V ) 𝑦 ↔ ( 𝐻 ‘ 𝑥 ) ( V × V ) ( 𝐻 ‘ 𝑦 ) ) ) ) |
| 15 | df-isom | ⊢ ( 𝐻 Isom ( V × V ) , ( V × V ) ( 𝐴 , 𝐵 ) ↔ ( 𝐻 : 𝐴 –1-1-onto→ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ( V × V ) 𝑦 ↔ ( 𝐻 ‘ 𝑥 ) ( V × V ) ( 𝐻 ‘ 𝑦 ) ) ) ) | |
| 16 | 14 15 | bitr4i | ⊢ ( 𝐻 : 𝐴 –1-1-onto→ 𝐵 ↔ 𝐻 Isom ( V × V ) , ( V × V ) ( 𝐴 , 𝐵 ) ) |