This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: For sets, the identity relation is the same as equality. (Contributed by NM, 30-Apr-2004) (Proof shortened by Andrew Salmon, 27-Aug-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ideqg | ⊢ ( 𝐵 ∈ 𝑉 → ( 𝐴 I 𝐵 ↔ 𝐴 = 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id | ⊢ ( 𝐵 ∈ 𝑉 → 𝐵 ∈ 𝑉 ) | |
| 2 | reli | ⊢ Rel I | |
| 3 | 2 | brrelex1i | ⊢ ( 𝐴 I 𝐵 → 𝐴 ∈ V ) |
| 4 | 1 3 | anim12ci | ⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝐴 I 𝐵 ) → ( 𝐴 ∈ V ∧ 𝐵 ∈ 𝑉 ) ) |
| 5 | eleq1 | ⊢ ( 𝐴 = 𝐵 → ( 𝐴 ∈ 𝑉 ↔ 𝐵 ∈ 𝑉 ) ) | |
| 6 | 5 | biimparc | ⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝐴 = 𝐵 ) → 𝐴 ∈ 𝑉 ) |
| 7 | 6 | elexd | ⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝐴 = 𝐵 ) → 𝐴 ∈ V ) |
| 8 | simpl | ⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝐴 = 𝐵 ) → 𝐵 ∈ 𝑉 ) | |
| 9 | 7 8 | jca | ⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝐴 = 𝐵 ) → ( 𝐴 ∈ V ∧ 𝐵 ∈ 𝑉 ) ) |
| 10 | eqeq1 | ⊢ ( 𝑥 = 𝐴 → ( 𝑥 = 𝑦 ↔ 𝐴 = 𝑦 ) ) | |
| 11 | eqeq2 | ⊢ ( 𝑦 = 𝐵 → ( 𝐴 = 𝑦 ↔ 𝐴 = 𝐵 ) ) | |
| 12 | df-id | ⊢ I = { 〈 𝑥 , 𝑦 〉 ∣ 𝑥 = 𝑦 } | |
| 13 | 10 11 12 | brabg | ⊢ ( ( 𝐴 ∈ V ∧ 𝐵 ∈ 𝑉 ) → ( 𝐴 I 𝐵 ↔ 𝐴 = 𝐵 ) ) |
| 14 | 4 9 13 | pm5.21nd | ⊢ ( 𝐵 ∈ 𝑉 → ( 𝐴 I 𝐵 ↔ 𝐴 = 𝐵 ) ) |