This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A function is a bijection iff it is an isomorphism regarding the identity relation. (Contributed by AV, 9-May-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | isof1oidb | |- ( H : A -1-1-onto-> B <-> H Isom _I , _I ( A , B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1of1 | |- ( H : A -1-1-onto-> B -> H : A -1-1-> B ) |
|
| 2 | f1fveq | |- ( ( H : A -1-1-> B /\ ( x e. A /\ y e. A ) ) -> ( ( H ` x ) = ( H ` y ) <-> x = y ) ) |
|
| 3 | 1 2 | sylan | |- ( ( H : A -1-1-onto-> B /\ ( x e. A /\ y e. A ) ) -> ( ( H ` x ) = ( H ` y ) <-> x = y ) ) |
| 4 | fvex | |- ( H ` y ) e. _V |
|
| 5 | 4 | ideq | |- ( ( H ` x ) _I ( H ` y ) <-> ( H ` x ) = ( H ` y ) ) |
| 6 | 5 | a1i | |- ( ( H : A -1-1-onto-> B /\ ( x e. A /\ y e. A ) ) -> ( ( H ` x ) _I ( H ` y ) <-> ( H ` x ) = ( H ` y ) ) ) |
| 7 | ideqg | |- ( y e. A -> ( x _I y <-> x = y ) ) |
|
| 8 | 7 | ad2antll | |- ( ( H : A -1-1-onto-> B /\ ( x e. A /\ y e. A ) ) -> ( x _I y <-> x = y ) ) |
| 9 | 3 6 8 | 3bitr4rd | |- ( ( H : A -1-1-onto-> B /\ ( x e. A /\ y e. A ) ) -> ( x _I y <-> ( H ` x ) _I ( H ` y ) ) ) |
| 10 | 9 | ralrimivva | |- ( H : A -1-1-onto-> B -> A. x e. A A. y e. A ( x _I y <-> ( H ` x ) _I ( H ` y ) ) ) |
| 11 | 10 | pm4.71i | |- ( H : A -1-1-onto-> B <-> ( H : A -1-1-onto-> B /\ A. x e. A A. y e. A ( x _I y <-> ( H ` x ) _I ( H ` y ) ) ) ) |
| 12 | df-isom | |- ( H Isom _I , _I ( A , B ) <-> ( H : A -1-1-onto-> B /\ A. x e. A A. y e. A ( x _I y <-> ( H ` x ) _I ( H ` y ) ) ) ) |
|
| 13 | 11 12 | bitr4i | |- ( H : A -1-1-onto-> B <-> H Isom _I , _I ( A , B ) ) |