This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A normed (left) module is a module which is also a normed group over a normed ring, such that the norm distributes over scalar multiplication. (Contributed by Mario Carneiro, 4-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-nlm | ⊢ NrmMod = { 𝑤 ∈ ( NrmGrp ∩ LMod ) ∣ [ ( Scalar ‘ 𝑤 ) / 𝑓 ] ( 𝑓 ∈ NrmRing ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑓 ) ∀ 𝑦 ∈ ( Base ‘ 𝑤 ) ( ( norm ‘ 𝑤 ) ‘ ( 𝑥 ( ·𝑠 ‘ 𝑤 ) 𝑦 ) ) = ( ( ( norm ‘ 𝑓 ) ‘ 𝑥 ) · ( ( norm ‘ 𝑤 ) ‘ 𝑦 ) ) ) } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cnlm | ⊢ NrmMod | |
| 1 | vw | ⊢ 𝑤 | |
| 2 | cngp | ⊢ NrmGrp | |
| 3 | clmod | ⊢ LMod | |
| 4 | 2 3 | cin | ⊢ ( NrmGrp ∩ LMod ) |
| 5 | csca | ⊢ Scalar | |
| 6 | 1 | cv | ⊢ 𝑤 |
| 7 | 6 5 | cfv | ⊢ ( Scalar ‘ 𝑤 ) |
| 8 | vf | ⊢ 𝑓 | |
| 9 | 8 | cv | ⊢ 𝑓 |
| 10 | cnrg | ⊢ NrmRing | |
| 11 | 9 10 | wcel | ⊢ 𝑓 ∈ NrmRing |
| 12 | vx | ⊢ 𝑥 | |
| 13 | cbs | ⊢ Base | |
| 14 | 9 13 | cfv | ⊢ ( Base ‘ 𝑓 ) |
| 15 | vy | ⊢ 𝑦 | |
| 16 | 6 13 | cfv | ⊢ ( Base ‘ 𝑤 ) |
| 17 | cnm | ⊢ norm | |
| 18 | 6 17 | cfv | ⊢ ( norm ‘ 𝑤 ) |
| 19 | 12 | cv | ⊢ 𝑥 |
| 20 | cvsca | ⊢ ·𝑠 | |
| 21 | 6 20 | cfv | ⊢ ( ·𝑠 ‘ 𝑤 ) |
| 22 | 15 | cv | ⊢ 𝑦 |
| 23 | 19 22 21 | co | ⊢ ( 𝑥 ( ·𝑠 ‘ 𝑤 ) 𝑦 ) |
| 24 | 23 18 | cfv | ⊢ ( ( norm ‘ 𝑤 ) ‘ ( 𝑥 ( ·𝑠 ‘ 𝑤 ) 𝑦 ) ) |
| 25 | 9 17 | cfv | ⊢ ( norm ‘ 𝑓 ) |
| 26 | 19 25 | cfv | ⊢ ( ( norm ‘ 𝑓 ) ‘ 𝑥 ) |
| 27 | cmul | ⊢ · | |
| 28 | 22 18 | cfv | ⊢ ( ( norm ‘ 𝑤 ) ‘ 𝑦 ) |
| 29 | 26 28 27 | co | ⊢ ( ( ( norm ‘ 𝑓 ) ‘ 𝑥 ) · ( ( norm ‘ 𝑤 ) ‘ 𝑦 ) ) |
| 30 | 24 29 | wceq | ⊢ ( ( norm ‘ 𝑤 ) ‘ ( 𝑥 ( ·𝑠 ‘ 𝑤 ) 𝑦 ) ) = ( ( ( norm ‘ 𝑓 ) ‘ 𝑥 ) · ( ( norm ‘ 𝑤 ) ‘ 𝑦 ) ) |
| 31 | 30 15 16 | wral | ⊢ ∀ 𝑦 ∈ ( Base ‘ 𝑤 ) ( ( norm ‘ 𝑤 ) ‘ ( 𝑥 ( ·𝑠 ‘ 𝑤 ) 𝑦 ) ) = ( ( ( norm ‘ 𝑓 ) ‘ 𝑥 ) · ( ( norm ‘ 𝑤 ) ‘ 𝑦 ) ) |
| 32 | 31 12 14 | wral | ⊢ ∀ 𝑥 ∈ ( Base ‘ 𝑓 ) ∀ 𝑦 ∈ ( Base ‘ 𝑤 ) ( ( norm ‘ 𝑤 ) ‘ ( 𝑥 ( ·𝑠 ‘ 𝑤 ) 𝑦 ) ) = ( ( ( norm ‘ 𝑓 ) ‘ 𝑥 ) · ( ( norm ‘ 𝑤 ) ‘ 𝑦 ) ) |
| 33 | 11 32 | wa | ⊢ ( 𝑓 ∈ NrmRing ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑓 ) ∀ 𝑦 ∈ ( Base ‘ 𝑤 ) ( ( norm ‘ 𝑤 ) ‘ ( 𝑥 ( ·𝑠 ‘ 𝑤 ) 𝑦 ) ) = ( ( ( norm ‘ 𝑓 ) ‘ 𝑥 ) · ( ( norm ‘ 𝑤 ) ‘ 𝑦 ) ) ) |
| 34 | 33 8 7 | wsbc | ⊢ [ ( Scalar ‘ 𝑤 ) / 𝑓 ] ( 𝑓 ∈ NrmRing ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑓 ) ∀ 𝑦 ∈ ( Base ‘ 𝑤 ) ( ( norm ‘ 𝑤 ) ‘ ( 𝑥 ( ·𝑠 ‘ 𝑤 ) 𝑦 ) ) = ( ( ( norm ‘ 𝑓 ) ‘ 𝑥 ) · ( ( norm ‘ 𝑤 ) ‘ 𝑦 ) ) ) |
| 35 | 34 1 4 | crab | ⊢ { 𝑤 ∈ ( NrmGrp ∩ LMod ) ∣ [ ( Scalar ‘ 𝑤 ) / 𝑓 ] ( 𝑓 ∈ NrmRing ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑓 ) ∀ 𝑦 ∈ ( Base ‘ 𝑤 ) ( ( norm ‘ 𝑤 ) ‘ ( 𝑥 ( ·𝑠 ‘ 𝑤 ) 𝑦 ) ) = ( ( ( norm ‘ 𝑓 ) ‘ 𝑥 ) · ( ( norm ‘ 𝑤 ) ‘ 𝑦 ) ) ) } |
| 36 | 0 35 | wceq | ⊢ NrmMod = { 𝑤 ∈ ( NrmGrp ∩ LMod ) ∣ [ ( Scalar ‘ 𝑤 ) / 𝑓 ] ( 𝑓 ∈ NrmRing ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑓 ) ∀ 𝑦 ∈ ( Base ‘ 𝑤 ) ( ( norm ‘ 𝑤 ) ‘ ( 𝑥 ( ·𝑠 ‘ 𝑤 ) 𝑦 ) ) = ( ( ( norm ‘ 𝑓 ) ‘ 𝑥 ) · ( ( norm ‘ 𝑤 ) ‘ 𝑦 ) ) ) } |