This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Express the property of being a normed group purely in terms of right-translation invariance of the metric instead of using the definition of norm (which itself uses the metric). (Contributed by Mario Carneiro, 29-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ngprcan.x | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | |
| ngprcan.p | ⊢ + = ( +g ‘ 𝐺 ) | ||
| ngprcan.d | ⊢ 𝐷 = ( dist ‘ 𝐺 ) | ||
| Assertion | isngp4 | ⊢ ( 𝐺 ∈ NrmGrp ↔ ( 𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ∀ 𝑧 ∈ 𝑋 ( ( 𝑥 + 𝑧 ) 𝐷 ( 𝑦 + 𝑧 ) ) = ( 𝑥 𝐷 𝑦 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ngprcan.x | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | |
| 2 | ngprcan.p | ⊢ + = ( +g ‘ 𝐺 ) | |
| 3 | ngprcan.d | ⊢ 𝐷 = ( dist ‘ 𝐺 ) | |
| 4 | ngpgrp | ⊢ ( 𝐺 ∈ NrmGrp → 𝐺 ∈ Grp ) | |
| 5 | ngpms | ⊢ ( 𝐺 ∈ NrmGrp → 𝐺 ∈ MetSp ) | |
| 6 | 1 2 3 | ngprcan | ⊢ ( ( 𝐺 ∈ NrmGrp ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → ( ( 𝑥 + 𝑧 ) 𝐷 ( 𝑦 + 𝑧 ) ) = ( 𝑥 𝐷 𝑦 ) ) |
| 7 | 6 | ralrimivvva | ⊢ ( 𝐺 ∈ NrmGrp → ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ∀ 𝑧 ∈ 𝑋 ( ( 𝑥 + 𝑧 ) 𝐷 ( 𝑦 + 𝑧 ) ) = ( 𝑥 𝐷 𝑦 ) ) |
| 8 | 4 5 7 | 3jca | ⊢ ( 𝐺 ∈ NrmGrp → ( 𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ∀ 𝑧 ∈ 𝑋 ( ( 𝑥 + 𝑧 ) 𝐷 ( 𝑦 + 𝑧 ) ) = ( 𝑥 𝐷 𝑦 ) ) ) |
| 9 | simp1 | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ∀ 𝑧 ∈ 𝑋 ( ( 𝑥 + 𝑧 ) 𝐷 ( 𝑦 + 𝑧 ) ) = ( 𝑥 𝐷 𝑦 ) ) → 𝐺 ∈ Grp ) | |
| 10 | simp2 | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ∀ 𝑧 ∈ 𝑋 ( ( 𝑥 + 𝑧 ) 𝐷 ( 𝑦 + 𝑧 ) ) = ( 𝑥 𝐷 𝑦 ) ) → 𝐺 ∈ MetSp ) | |
| 11 | eqid | ⊢ ( invg ‘ 𝐺 ) = ( invg ‘ 𝐺 ) | |
| 12 | 1 11 | grpinvcl | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑦 ∈ 𝑋 ) → ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ∈ 𝑋 ) |
| 13 | 12 | ad2ant2rl | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ∈ 𝑋 ) |
| 14 | eqcom | ⊢ ( ( ( 𝑥 + 𝑧 ) 𝐷 ( 𝑦 + 𝑧 ) ) = ( 𝑥 𝐷 𝑦 ) ↔ ( 𝑥 𝐷 𝑦 ) = ( ( 𝑥 + 𝑧 ) 𝐷 ( 𝑦 + 𝑧 ) ) ) | |
| 15 | oveq2 | ⊢ ( 𝑧 = ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) → ( 𝑥 + 𝑧 ) = ( 𝑥 + ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ) ) | |
| 16 | oveq2 | ⊢ ( 𝑧 = ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) → ( 𝑦 + 𝑧 ) = ( 𝑦 + ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ) ) | |
| 17 | 15 16 | oveq12d | ⊢ ( 𝑧 = ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) → ( ( 𝑥 + 𝑧 ) 𝐷 ( 𝑦 + 𝑧 ) ) = ( ( 𝑥 + ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ) 𝐷 ( 𝑦 + ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ) ) ) |
| 18 | 17 | eqeq2d | ⊢ ( 𝑧 = ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) → ( ( 𝑥 𝐷 𝑦 ) = ( ( 𝑥 + 𝑧 ) 𝐷 ( 𝑦 + 𝑧 ) ) ↔ ( 𝑥 𝐷 𝑦 ) = ( ( 𝑥 + ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ) 𝐷 ( 𝑦 + ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ) ) ) ) |
| 19 | 14 18 | bitrid | ⊢ ( 𝑧 = ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) → ( ( ( 𝑥 + 𝑧 ) 𝐷 ( 𝑦 + 𝑧 ) ) = ( 𝑥 𝐷 𝑦 ) ↔ ( 𝑥 𝐷 𝑦 ) = ( ( 𝑥 + ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ) 𝐷 ( 𝑦 + ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ) ) ) ) |
| 20 | 19 | rspcv | ⊢ ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ∈ 𝑋 → ( ∀ 𝑧 ∈ 𝑋 ( ( 𝑥 + 𝑧 ) 𝐷 ( 𝑦 + 𝑧 ) ) = ( 𝑥 𝐷 𝑦 ) → ( 𝑥 𝐷 𝑦 ) = ( ( 𝑥 + ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ) 𝐷 ( 𝑦 + ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ) ) ) ) |
| 21 | 13 20 | syl | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( ∀ 𝑧 ∈ 𝑋 ( ( 𝑥 + 𝑧 ) 𝐷 ( 𝑦 + 𝑧 ) ) = ( 𝑥 𝐷 𝑦 ) → ( 𝑥 𝐷 𝑦 ) = ( ( 𝑥 + ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ) 𝐷 ( 𝑦 + ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ) ) ) ) |
| 22 | eqid | ⊢ ( -g ‘ 𝐺 ) = ( -g ‘ 𝐺 ) | |
| 23 | 1 2 11 22 | grpsubval | ⊢ ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( 𝑥 ( -g ‘ 𝐺 ) 𝑦 ) = ( 𝑥 + ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ) ) |
| 24 | 23 | adantl | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( 𝑥 ( -g ‘ 𝐺 ) 𝑦 ) = ( 𝑥 + ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ) ) |
| 25 | 24 | eqcomd | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( 𝑥 + ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ) = ( 𝑥 ( -g ‘ 𝐺 ) 𝑦 ) ) |
| 26 | eqid | ⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) | |
| 27 | 1 2 26 11 | grprinv | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑦 ∈ 𝑋 ) → ( 𝑦 + ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ) = ( 0g ‘ 𝐺 ) ) |
| 28 | 27 | ad2ant2rl | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( 𝑦 + ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ) = ( 0g ‘ 𝐺 ) ) |
| 29 | 25 28 | oveq12d | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( ( 𝑥 + ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ) 𝐷 ( 𝑦 + ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ) ) = ( ( 𝑥 ( -g ‘ 𝐺 ) 𝑦 ) 𝐷 ( 0g ‘ 𝐺 ) ) ) |
| 30 | 1 22 | grpsubcl | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( 𝑥 ( -g ‘ 𝐺 ) 𝑦 ) ∈ 𝑋 ) |
| 31 | 30 | 3expb | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( 𝑥 ( -g ‘ 𝐺 ) 𝑦 ) ∈ 𝑋 ) |
| 32 | 31 | adantlr | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( 𝑥 ( -g ‘ 𝐺 ) 𝑦 ) ∈ 𝑋 ) |
| 33 | eqid | ⊢ ( norm ‘ 𝐺 ) = ( norm ‘ 𝐺 ) | |
| 34 | 33 1 26 3 | nmval | ⊢ ( ( 𝑥 ( -g ‘ 𝐺 ) 𝑦 ) ∈ 𝑋 → ( ( norm ‘ 𝐺 ) ‘ ( 𝑥 ( -g ‘ 𝐺 ) 𝑦 ) ) = ( ( 𝑥 ( -g ‘ 𝐺 ) 𝑦 ) 𝐷 ( 0g ‘ 𝐺 ) ) ) |
| 35 | 32 34 | syl | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( ( norm ‘ 𝐺 ) ‘ ( 𝑥 ( -g ‘ 𝐺 ) 𝑦 ) ) = ( ( 𝑥 ( -g ‘ 𝐺 ) 𝑦 ) 𝐷 ( 0g ‘ 𝐺 ) ) ) |
| 36 | 29 35 | eqtr4d | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( ( 𝑥 + ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ) 𝐷 ( 𝑦 + ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ) ) = ( ( norm ‘ 𝐺 ) ‘ ( 𝑥 ( -g ‘ 𝐺 ) 𝑦 ) ) ) |
| 37 | 36 | eqeq2d | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( ( 𝑥 𝐷 𝑦 ) = ( ( 𝑥 + ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ) 𝐷 ( 𝑦 + ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ) ) ↔ ( 𝑥 𝐷 𝑦 ) = ( ( norm ‘ 𝐺 ) ‘ ( 𝑥 ( -g ‘ 𝐺 ) 𝑦 ) ) ) ) |
| 38 | 21 37 | sylibd | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( ∀ 𝑧 ∈ 𝑋 ( ( 𝑥 + 𝑧 ) 𝐷 ( 𝑦 + 𝑧 ) ) = ( 𝑥 𝐷 𝑦 ) → ( 𝑥 𝐷 𝑦 ) = ( ( norm ‘ 𝐺 ) ‘ ( 𝑥 ( -g ‘ 𝐺 ) 𝑦 ) ) ) ) |
| 39 | 38 | ralimdvva | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp ) → ( ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ∀ 𝑧 ∈ 𝑋 ( ( 𝑥 + 𝑧 ) 𝐷 ( 𝑦 + 𝑧 ) ) = ( 𝑥 𝐷 𝑦 ) → ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝐷 𝑦 ) = ( ( norm ‘ 𝐺 ) ‘ ( 𝑥 ( -g ‘ 𝐺 ) 𝑦 ) ) ) ) |
| 40 | 39 | 3impia | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ∀ 𝑧 ∈ 𝑋 ( ( 𝑥 + 𝑧 ) 𝐷 ( 𝑦 + 𝑧 ) ) = ( 𝑥 𝐷 𝑦 ) ) → ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝐷 𝑦 ) = ( ( norm ‘ 𝐺 ) ‘ ( 𝑥 ( -g ‘ 𝐺 ) 𝑦 ) ) ) |
| 41 | 33 22 3 1 | isngp3 | ⊢ ( 𝐺 ∈ NrmGrp ↔ ( 𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝐷 𝑦 ) = ( ( norm ‘ 𝐺 ) ‘ ( 𝑥 ( -g ‘ 𝐺 ) 𝑦 ) ) ) ) |
| 42 | 9 10 40 41 | syl3anbrc | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ∀ 𝑧 ∈ 𝑋 ( ( 𝑥 + 𝑧 ) 𝐷 ( 𝑦 + 𝑧 ) ) = ( 𝑥 𝐷 𝑦 ) ) → 𝐺 ∈ NrmGrp ) |
| 43 | 8 42 | impbii | ⊢ ( 𝐺 ∈ NrmGrp ↔ ( 𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ∀ 𝑧 ∈ 𝑋 ( ( 𝑥 + 𝑧 ) 𝐷 ( 𝑦 + 𝑧 ) ) = ( 𝑥 𝐷 𝑦 ) ) ) |