This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Cancel right addition inside a distance calculation. (Contributed by Mario Carneiro, 2-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ngprcan.x | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | |
| ngprcan.p | ⊢ + = ( +g ‘ 𝐺 ) | ||
| ngprcan.d | ⊢ 𝐷 = ( dist ‘ 𝐺 ) | ||
| Assertion | ngprcan | ⊢ ( ( 𝐺 ∈ NrmGrp ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( ( 𝐴 + 𝐶 ) 𝐷 ( 𝐵 + 𝐶 ) ) = ( 𝐴 𝐷 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ngprcan.x | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | |
| 2 | ngprcan.p | ⊢ + = ( +g ‘ 𝐺 ) | |
| 3 | ngprcan.d | ⊢ 𝐷 = ( dist ‘ 𝐺 ) | |
| 4 | ngpgrp | ⊢ ( 𝐺 ∈ NrmGrp → 𝐺 ∈ Grp ) | |
| 5 | eqid | ⊢ ( -g ‘ 𝐺 ) = ( -g ‘ 𝐺 ) | |
| 6 | 1 2 5 | grppnpcan2 | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( ( 𝐴 + 𝐶 ) ( -g ‘ 𝐺 ) ( 𝐵 + 𝐶 ) ) = ( 𝐴 ( -g ‘ 𝐺 ) 𝐵 ) ) |
| 7 | 4 6 | sylan | ⊢ ( ( 𝐺 ∈ NrmGrp ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( ( 𝐴 + 𝐶 ) ( -g ‘ 𝐺 ) ( 𝐵 + 𝐶 ) ) = ( 𝐴 ( -g ‘ 𝐺 ) 𝐵 ) ) |
| 8 | 7 | fveq2d | ⊢ ( ( 𝐺 ∈ NrmGrp ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( ( norm ‘ 𝐺 ) ‘ ( ( 𝐴 + 𝐶 ) ( -g ‘ 𝐺 ) ( 𝐵 + 𝐶 ) ) ) = ( ( norm ‘ 𝐺 ) ‘ ( 𝐴 ( -g ‘ 𝐺 ) 𝐵 ) ) ) |
| 9 | simpl | ⊢ ( ( 𝐺 ∈ NrmGrp ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → 𝐺 ∈ NrmGrp ) | |
| 10 | 4 | adantr | ⊢ ( ( 𝐺 ∈ NrmGrp ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → 𝐺 ∈ Grp ) |
| 11 | simpr1 | ⊢ ( ( 𝐺 ∈ NrmGrp ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → 𝐴 ∈ 𝑋 ) | |
| 12 | simpr3 | ⊢ ( ( 𝐺 ∈ NrmGrp ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → 𝐶 ∈ 𝑋 ) | |
| 13 | 1 2 | grpcl | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) → ( 𝐴 + 𝐶 ) ∈ 𝑋 ) |
| 14 | 10 11 12 13 | syl3anc | ⊢ ( ( 𝐺 ∈ NrmGrp ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( 𝐴 + 𝐶 ) ∈ 𝑋 ) |
| 15 | simpr2 | ⊢ ( ( 𝐺 ∈ NrmGrp ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → 𝐵 ∈ 𝑋 ) | |
| 16 | 1 2 | grpcl | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) → ( 𝐵 + 𝐶 ) ∈ 𝑋 ) |
| 17 | 10 15 12 16 | syl3anc | ⊢ ( ( 𝐺 ∈ NrmGrp ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( 𝐵 + 𝐶 ) ∈ 𝑋 ) |
| 18 | eqid | ⊢ ( norm ‘ 𝐺 ) = ( norm ‘ 𝐺 ) | |
| 19 | 18 1 5 3 | ngpds | ⊢ ( ( 𝐺 ∈ NrmGrp ∧ ( 𝐴 + 𝐶 ) ∈ 𝑋 ∧ ( 𝐵 + 𝐶 ) ∈ 𝑋 ) → ( ( 𝐴 + 𝐶 ) 𝐷 ( 𝐵 + 𝐶 ) ) = ( ( norm ‘ 𝐺 ) ‘ ( ( 𝐴 + 𝐶 ) ( -g ‘ 𝐺 ) ( 𝐵 + 𝐶 ) ) ) ) |
| 20 | 9 14 17 19 | syl3anc | ⊢ ( ( 𝐺 ∈ NrmGrp ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( ( 𝐴 + 𝐶 ) 𝐷 ( 𝐵 + 𝐶 ) ) = ( ( norm ‘ 𝐺 ) ‘ ( ( 𝐴 + 𝐶 ) ( -g ‘ 𝐺 ) ( 𝐵 + 𝐶 ) ) ) ) |
| 21 | 18 1 5 3 | ngpds | ⊢ ( ( 𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 𝐷 𝐵 ) = ( ( norm ‘ 𝐺 ) ‘ ( 𝐴 ( -g ‘ 𝐺 ) 𝐵 ) ) ) |
| 22 | 9 11 15 21 | syl3anc | ⊢ ( ( 𝐺 ∈ NrmGrp ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( 𝐴 𝐷 𝐵 ) = ( ( norm ‘ 𝐺 ) ‘ ( 𝐴 ( -g ‘ 𝐺 ) 𝐵 ) ) ) |
| 23 | 8 20 22 | 3eqtr4d | ⊢ ( ( 𝐺 ∈ NrmGrp ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( ( 𝐴 + 𝐶 ) 𝐷 ( 𝐵 + 𝐶 ) ) = ( 𝐴 𝐷 𝐵 ) ) |