This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Property of being a natural transformation. (Contributed by Mario Carneiro, 6-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | natfval.1 | ⊢ 𝑁 = ( 𝐶 Nat 𝐷 ) | |
| natfval.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | ||
| natfval.h | ⊢ 𝐻 = ( Hom ‘ 𝐶 ) | ||
| natfval.j | ⊢ 𝐽 = ( Hom ‘ 𝐷 ) | ||
| natfval.o | ⊢ · = ( comp ‘ 𝐷 ) | ||
| isnat.f | ⊢ ( 𝜑 → 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ) | ||
| isnat.g | ⊢ ( 𝜑 → 𝐾 ( 𝐶 Func 𝐷 ) 𝐿 ) | ||
| Assertion | isnat | ⊢ ( 𝜑 → ( 𝐴 ∈ ( 〈 𝐹 , 𝐺 〉 𝑁 〈 𝐾 , 𝐿 〉 ) ↔ ( 𝐴 ∈ X 𝑥 ∈ 𝐵 ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐾 ‘ 𝑥 ) ) ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∀ ℎ ∈ ( 𝑥 𝐻 𝑦 ) ( ( 𝐴 ‘ 𝑦 ) ( 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) 〉 · ( 𝐾 ‘ 𝑦 ) ) ( ( 𝑥 𝐺 𝑦 ) ‘ ℎ ) ) = ( ( ( 𝑥 𝐿 𝑦 ) ‘ ℎ ) ( 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐾 ‘ 𝑥 ) 〉 · ( 𝐾 ‘ 𝑦 ) ) ( 𝐴 ‘ 𝑥 ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | natfval.1 | ⊢ 𝑁 = ( 𝐶 Nat 𝐷 ) | |
| 2 | natfval.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | |
| 3 | natfval.h | ⊢ 𝐻 = ( Hom ‘ 𝐶 ) | |
| 4 | natfval.j | ⊢ 𝐽 = ( Hom ‘ 𝐷 ) | |
| 5 | natfval.o | ⊢ · = ( comp ‘ 𝐷 ) | |
| 6 | isnat.f | ⊢ ( 𝜑 → 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ) | |
| 7 | isnat.g | ⊢ ( 𝜑 → 𝐾 ( 𝐶 Func 𝐷 ) 𝐿 ) | |
| 8 | 1 2 3 4 5 | natfval | ⊢ 𝑁 = ( 𝑓 ∈ ( 𝐶 Func 𝐷 ) , 𝑔 ∈ ( 𝐶 Func 𝐷 ) ↦ ⦋ ( 1st ‘ 𝑓 ) / 𝑟 ⦌ ⦋ ( 1st ‘ 𝑔 ) / 𝑠 ⦌ { 𝑎 ∈ X 𝑥 ∈ 𝐵 ( ( 𝑟 ‘ 𝑥 ) 𝐽 ( 𝑠 ‘ 𝑥 ) ) ∣ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∀ ℎ ∈ ( 𝑥 𝐻 𝑦 ) ( ( 𝑎 ‘ 𝑦 ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑟 ‘ 𝑦 ) 〉 · ( 𝑠 ‘ 𝑦 ) ) ( ( 𝑥 ( 2nd ‘ 𝑓 ) 𝑦 ) ‘ ℎ ) ) = ( ( ( 𝑥 ( 2nd ‘ 𝑔 ) 𝑦 ) ‘ ℎ ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑠 ‘ 𝑥 ) 〉 · ( 𝑠 ‘ 𝑦 ) ) ( 𝑎 ‘ 𝑥 ) ) } ) |
| 9 | 8 | a1i | ⊢ ( 𝜑 → 𝑁 = ( 𝑓 ∈ ( 𝐶 Func 𝐷 ) , 𝑔 ∈ ( 𝐶 Func 𝐷 ) ↦ ⦋ ( 1st ‘ 𝑓 ) / 𝑟 ⦌ ⦋ ( 1st ‘ 𝑔 ) / 𝑠 ⦌ { 𝑎 ∈ X 𝑥 ∈ 𝐵 ( ( 𝑟 ‘ 𝑥 ) 𝐽 ( 𝑠 ‘ 𝑥 ) ) ∣ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∀ ℎ ∈ ( 𝑥 𝐻 𝑦 ) ( ( 𝑎 ‘ 𝑦 ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑟 ‘ 𝑦 ) 〉 · ( 𝑠 ‘ 𝑦 ) ) ( ( 𝑥 ( 2nd ‘ 𝑓 ) 𝑦 ) ‘ ℎ ) ) = ( ( ( 𝑥 ( 2nd ‘ 𝑔 ) 𝑦 ) ‘ ℎ ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑠 ‘ 𝑥 ) 〉 · ( 𝑠 ‘ 𝑦 ) ) ( 𝑎 ‘ 𝑥 ) ) } ) ) |
| 10 | fvexd | ⊢ ( ( 𝜑 ∧ ( 𝑓 = 〈 𝐹 , 𝐺 〉 ∧ 𝑔 = 〈 𝐾 , 𝐿 〉 ) ) → ( 1st ‘ 𝑓 ) ∈ V ) | |
| 11 | simprl | ⊢ ( ( 𝜑 ∧ ( 𝑓 = 〈 𝐹 , 𝐺 〉 ∧ 𝑔 = 〈 𝐾 , 𝐿 〉 ) ) → 𝑓 = 〈 𝐹 , 𝐺 〉 ) | |
| 12 | 11 | fveq2d | ⊢ ( ( 𝜑 ∧ ( 𝑓 = 〈 𝐹 , 𝐺 〉 ∧ 𝑔 = 〈 𝐾 , 𝐿 〉 ) ) → ( 1st ‘ 𝑓 ) = ( 1st ‘ 〈 𝐹 , 𝐺 〉 ) ) |
| 13 | relfunc | ⊢ Rel ( 𝐶 Func 𝐷 ) | |
| 14 | brrelex12 | ⊢ ( ( Rel ( 𝐶 Func 𝐷 ) ∧ 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ) → ( 𝐹 ∈ V ∧ 𝐺 ∈ V ) ) | |
| 15 | 13 6 14 | sylancr | ⊢ ( 𝜑 → ( 𝐹 ∈ V ∧ 𝐺 ∈ V ) ) |
| 16 | op1stg | ⊢ ( ( 𝐹 ∈ V ∧ 𝐺 ∈ V ) → ( 1st ‘ 〈 𝐹 , 𝐺 〉 ) = 𝐹 ) | |
| 17 | 15 16 | syl | ⊢ ( 𝜑 → ( 1st ‘ 〈 𝐹 , 𝐺 〉 ) = 𝐹 ) |
| 18 | 17 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑓 = 〈 𝐹 , 𝐺 〉 ∧ 𝑔 = 〈 𝐾 , 𝐿 〉 ) ) → ( 1st ‘ 〈 𝐹 , 𝐺 〉 ) = 𝐹 ) |
| 19 | 12 18 | eqtrd | ⊢ ( ( 𝜑 ∧ ( 𝑓 = 〈 𝐹 , 𝐺 〉 ∧ 𝑔 = 〈 𝐾 , 𝐿 〉 ) ) → ( 1st ‘ 𝑓 ) = 𝐹 ) |
| 20 | fvexd | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 = 〈 𝐹 , 𝐺 〉 ∧ 𝑔 = 〈 𝐾 , 𝐿 〉 ) ) ∧ 𝑟 = 𝐹 ) → ( 1st ‘ 𝑔 ) ∈ V ) | |
| 21 | simplrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 = 〈 𝐹 , 𝐺 〉 ∧ 𝑔 = 〈 𝐾 , 𝐿 〉 ) ) ∧ 𝑟 = 𝐹 ) → 𝑔 = 〈 𝐾 , 𝐿 〉 ) | |
| 22 | 21 | fveq2d | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 = 〈 𝐹 , 𝐺 〉 ∧ 𝑔 = 〈 𝐾 , 𝐿 〉 ) ) ∧ 𝑟 = 𝐹 ) → ( 1st ‘ 𝑔 ) = ( 1st ‘ 〈 𝐾 , 𝐿 〉 ) ) |
| 23 | brrelex12 | ⊢ ( ( Rel ( 𝐶 Func 𝐷 ) ∧ 𝐾 ( 𝐶 Func 𝐷 ) 𝐿 ) → ( 𝐾 ∈ V ∧ 𝐿 ∈ V ) ) | |
| 24 | 13 7 23 | sylancr | ⊢ ( 𝜑 → ( 𝐾 ∈ V ∧ 𝐿 ∈ V ) ) |
| 25 | op1stg | ⊢ ( ( 𝐾 ∈ V ∧ 𝐿 ∈ V ) → ( 1st ‘ 〈 𝐾 , 𝐿 〉 ) = 𝐾 ) | |
| 26 | 24 25 | syl | ⊢ ( 𝜑 → ( 1st ‘ 〈 𝐾 , 𝐿 〉 ) = 𝐾 ) |
| 27 | 26 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 = 〈 𝐹 , 𝐺 〉 ∧ 𝑔 = 〈 𝐾 , 𝐿 〉 ) ) ∧ 𝑟 = 𝐹 ) → ( 1st ‘ 〈 𝐾 , 𝐿 〉 ) = 𝐾 ) |
| 28 | 22 27 | eqtrd | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 = 〈 𝐹 , 𝐺 〉 ∧ 𝑔 = 〈 𝐾 , 𝐿 〉 ) ) ∧ 𝑟 = 𝐹 ) → ( 1st ‘ 𝑔 ) = 𝐾 ) |
| 29 | simplr | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 = 〈 𝐹 , 𝐺 〉 ∧ 𝑔 = 〈 𝐾 , 𝐿 〉 ) ) ∧ 𝑟 = 𝐹 ) ∧ 𝑠 = 𝐾 ) → 𝑟 = 𝐹 ) | |
| 30 | 29 | fveq1d | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 = 〈 𝐹 , 𝐺 〉 ∧ 𝑔 = 〈 𝐾 , 𝐿 〉 ) ) ∧ 𝑟 = 𝐹 ) ∧ 𝑠 = 𝐾 ) → ( 𝑟 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑥 ) ) |
| 31 | simpr | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 = 〈 𝐹 , 𝐺 〉 ∧ 𝑔 = 〈 𝐾 , 𝐿 〉 ) ) ∧ 𝑟 = 𝐹 ) ∧ 𝑠 = 𝐾 ) → 𝑠 = 𝐾 ) | |
| 32 | 31 | fveq1d | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 = 〈 𝐹 , 𝐺 〉 ∧ 𝑔 = 〈 𝐾 , 𝐿 〉 ) ) ∧ 𝑟 = 𝐹 ) ∧ 𝑠 = 𝐾 ) → ( 𝑠 ‘ 𝑥 ) = ( 𝐾 ‘ 𝑥 ) ) |
| 33 | 30 32 | oveq12d | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 = 〈 𝐹 , 𝐺 〉 ∧ 𝑔 = 〈 𝐾 , 𝐿 〉 ) ) ∧ 𝑟 = 𝐹 ) ∧ 𝑠 = 𝐾 ) → ( ( 𝑟 ‘ 𝑥 ) 𝐽 ( 𝑠 ‘ 𝑥 ) ) = ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐾 ‘ 𝑥 ) ) ) |
| 34 | 33 | ixpeq2dv | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 = 〈 𝐹 , 𝐺 〉 ∧ 𝑔 = 〈 𝐾 , 𝐿 〉 ) ) ∧ 𝑟 = 𝐹 ) ∧ 𝑠 = 𝐾 ) → X 𝑥 ∈ 𝐵 ( ( 𝑟 ‘ 𝑥 ) 𝐽 ( 𝑠 ‘ 𝑥 ) ) = X 𝑥 ∈ 𝐵 ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐾 ‘ 𝑥 ) ) ) |
| 35 | 29 | fveq1d | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 = 〈 𝐹 , 𝐺 〉 ∧ 𝑔 = 〈 𝐾 , 𝐿 〉 ) ) ∧ 𝑟 = 𝐹 ) ∧ 𝑠 = 𝐾 ) → ( 𝑟 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑦 ) ) |
| 36 | 30 35 | opeq12d | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 = 〈 𝐹 , 𝐺 〉 ∧ 𝑔 = 〈 𝐾 , 𝐿 〉 ) ) ∧ 𝑟 = 𝐹 ) ∧ 𝑠 = 𝐾 ) → 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑟 ‘ 𝑦 ) 〉 = 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) 〉 ) |
| 37 | 31 | fveq1d | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 = 〈 𝐹 , 𝐺 〉 ∧ 𝑔 = 〈 𝐾 , 𝐿 〉 ) ) ∧ 𝑟 = 𝐹 ) ∧ 𝑠 = 𝐾 ) → ( 𝑠 ‘ 𝑦 ) = ( 𝐾 ‘ 𝑦 ) ) |
| 38 | 36 37 | oveq12d | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 = 〈 𝐹 , 𝐺 〉 ∧ 𝑔 = 〈 𝐾 , 𝐿 〉 ) ) ∧ 𝑟 = 𝐹 ) ∧ 𝑠 = 𝐾 ) → ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑟 ‘ 𝑦 ) 〉 · ( 𝑠 ‘ 𝑦 ) ) = ( 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) 〉 · ( 𝐾 ‘ 𝑦 ) ) ) |
| 39 | eqidd | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 = 〈 𝐹 , 𝐺 〉 ∧ 𝑔 = 〈 𝐾 , 𝐿 〉 ) ) ∧ 𝑟 = 𝐹 ) ∧ 𝑠 = 𝐾 ) → ( 𝑎 ‘ 𝑦 ) = ( 𝑎 ‘ 𝑦 ) ) | |
| 40 | 11 | ad2antrr | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 = 〈 𝐹 , 𝐺 〉 ∧ 𝑔 = 〈 𝐾 , 𝐿 〉 ) ) ∧ 𝑟 = 𝐹 ) ∧ 𝑠 = 𝐾 ) → 𝑓 = 〈 𝐹 , 𝐺 〉 ) |
| 41 | 40 | fveq2d | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 = 〈 𝐹 , 𝐺 〉 ∧ 𝑔 = 〈 𝐾 , 𝐿 〉 ) ) ∧ 𝑟 = 𝐹 ) ∧ 𝑠 = 𝐾 ) → ( 2nd ‘ 𝑓 ) = ( 2nd ‘ 〈 𝐹 , 𝐺 〉 ) ) |
| 42 | op2ndg | ⊢ ( ( 𝐹 ∈ V ∧ 𝐺 ∈ V ) → ( 2nd ‘ 〈 𝐹 , 𝐺 〉 ) = 𝐺 ) | |
| 43 | 15 42 | syl | ⊢ ( 𝜑 → ( 2nd ‘ 〈 𝐹 , 𝐺 〉 ) = 𝐺 ) |
| 44 | 43 | ad3antrrr | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 = 〈 𝐹 , 𝐺 〉 ∧ 𝑔 = 〈 𝐾 , 𝐿 〉 ) ) ∧ 𝑟 = 𝐹 ) ∧ 𝑠 = 𝐾 ) → ( 2nd ‘ 〈 𝐹 , 𝐺 〉 ) = 𝐺 ) |
| 45 | 41 44 | eqtrd | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 = 〈 𝐹 , 𝐺 〉 ∧ 𝑔 = 〈 𝐾 , 𝐿 〉 ) ) ∧ 𝑟 = 𝐹 ) ∧ 𝑠 = 𝐾 ) → ( 2nd ‘ 𝑓 ) = 𝐺 ) |
| 46 | 45 | oveqd | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 = 〈 𝐹 , 𝐺 〉 ∧ 𝑔 = 〈 𝐾 , 𝐿 〉 ) ) ∧ 𝑟 = 𝐹 ) ∧ 𝑠 = 𝐾 ) → ( 𝑥 ( 2nd ‘ 𝑓 ) 𝑦 ) = ( 𝑥 𝐺 𝑦 ) ) |
| 47 | 46 | fveq1d | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 = 〈 𝐹 , 𝐺 〉 ∧ 𝑔 = 〈 𝐾 , 𝐿 〉 ) ) ∧ 𝑟 = 𝐹 ) ∧ 𝑠 = 𝐾 ) → ( ( 𝑥 ( 2nd ‘ 𝑓 ) 𝑦 ) ‘ ℎ ) = ( ( 𝑥 𝐺 𝑦 ) ‘ ℎ ) ) |
| 48 | 38 39 47 | oveq123d | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 = 〈 𝐹 , 𝐺 〉 ∧ 𝑔 = 〈 𝐾 , 𝐿 〉 ) ) ∧ 𝑟 = 𝐹 ) ∧ 𝑠 = 𝐾 ) → ( ( 𝑎 ‘ 𝑦 ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑟 ‘ 𝑦 ) 〉 · ( 𝑠 ‘ 𝑦 ) ) ( ( 𝑥 ( 2nd ‘ 𝑓 ) 𝑦 ) ‘ ℎ ) ) = ( ( 𝑎 ‘ 𝑦 ) ( 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) 〉 · ( 𝐾 ‘ 𝑦 ) ) ( ( 𝑥 𝐺 𝑦 ) ‘ ℎ ) ) ) |
| 49 | 30 32 | opeq12d | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 = 〈 𝐹 , 𝐺 〉 ∧ 𝑔 = 〈 𝐾 , 𝐿 〉 ) ) ∧ 𝑟 = 𝐹 ) ∧ 𝑠 = 𝐾 ) → 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑠 ‘ 𝑥 ) 〉 = 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐾 ‘ 𝑥 ) 〉 ) |
| 50 | 49 37 | oveq12d | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 = 〈 𝐹 , 𝐺 〉 ∧ 𝑔 = 〈 𝐾 , 𝐿 〉 ) ) ∧ 𝑟 = 𝐹 ) ∧ 𝑠 = 𝐾 ) → ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑠 ‘ 𝑥 ) 〉 · ( 𝑠 ‘ 𝑦 ) ) = ( 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐾 ‘ 𝑥 ) 〉 · ( 𝐾 ‘ 𝑦 ) ) ) |
| 51 | 21 | adantr | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 = 〈 𝐹 , 𝐺 〉 ∧ 𝑔 = 〈 𝐾 , 𝐿 〉 ) ) ∧ 𝑟 = 𝐹 ) ∧ 𝑠 = 𝐾 ) → 𝑔 = 〈 𝐾 , 𝐿 〉 ) |
| 52 | 51 | fveq2d | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 = 〈 𝐹 , 𝐺 〉 ∧ 𝑔 = 〈 𝐾 , 𝐿 〉 ) ) ∧ 𝑟 = 𝐹 ) ∧ 𝑠 = 𝐾 ) → ( 2nd ‘ 𝑔 ) = ( 2nd ‘ 〈 𝐾 , 𝐿 〉 ) ) |
| 53 | op2ndg | ⊢ ( ( 𝐾 ∈ V ∧ 𝐿 ∈ V ) → ( 2nd ‘ 〈 𝐾 , 𝐿 〉 ) = 𝐿 ) | |
| 54 | 24 53 | syl | ⊢ ( 𝜑 → ( 2nd ‘ 〈 𝐾 , 𝐿 〉 ) = 𝐿 ) |
| 55 | 54 | ad3antrrr | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 = 〈 𝐹 , 𝐺 〉 ∧ 𝑔 = 〈 𝐾 , 𝐿 〉 ) ) ∧ 𝑟 = 𝐹 ) ∧ 𝑠 = 𝐾 ) → ( 2nd ‘ 〈 𝐾 , 𝐿 〉 ) = 𝐿 ) |
| 56 | 52 55 | eqtrd | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 = 〈 𝐹 , 𝐺 〉 ∧ 𝑔 = 〈 𝐾 , 𝐿 〉 ) ) ∧ 𝑟 = 𝐹 ) ∧ 𝑠 = 𝐾 ) → ( 2nd ‘ 𝑔 ) = 𝐿 ) |
| 57 | 56 | oveqd | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 = 〈 𝐹 , 𝐺 〉 ∧ 𝑔 = 〈 𝐾 , 𝐿 〉 ) ) ∧ 𝑟 = 𝐹 ) ∧ 𝑠 = 𝐾 ) → ( 𝑥 ( 2nd ‘ 𝑔 ) 𝑦 ) = ( 𝑥 𝐿 𝑦 ) ) |
| 58 | 57 | fveq1d | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 = 〈 𝐹 , 𝐺 〉 ∧ 𝑔 = 〈 𝐾 , 𝐿 〉 ) ) ∧ 𝑟 = 𝐹 ) ∧ 𝑠 = 𝐾 ) → ( ( 𝑥 ( 2nd ‘ 𝑔 ) 𝑦 ) ‘ ℎ ) = ( ( 𝑥 𝐿 𝑦 ) ‘ ℎ ) ) |
| 59 | eqidd | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 = 〈 𝐹 , 𝐺 〉 ∧ 𝑔 = 〈 𝐾 , 𝐿 〉 ) ) ∧ 𝑟 = 𝐹 ) ∧ 𝑠 = 𝐾 ) → ( 𝑎 ‘ 𝑥 ) = ( 𝑎 ‘ 𝑥 ) ) | |
| 60 | 50 58 59 | oveq123d | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 = 〈 𝐹 , 𝐺 〉 ∧ 𝑔 = 〈 𝐾 , 𝐿 〉 ) ) ∧ 𝑟 = 𝐹 ) ∧ 𝑠 = 𝐾 ) → ( ( ( 𝑥 ( 2nd ‘ 𝑔 ) 𝑦 ) ‘ ℎ ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑠 ‘ 𝑥 ) 〉 · ( 𝑠 ‘ 𝑦 ) ) ( 𝑎 ‘ 𝑥 ) ) = ( ( ( 𝑥 𝐿 𝑦 ) ‘ ℎ ) ( 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐾 ‘ 𝑥 ) 〉 · ( 𝐾 ‘ 𝑦 ) ) ( 𝑎 ‘ 𝑥 ) ) ) |
| 61 | 48 60 | eqeq12d | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 = 〈 𝐹 , 𝐺 〉 ∧ 𝑔 = 〈 𝐾 , 𝐿 〉 ) ) ∧ 𝑟 = 𝐹 ) ∧ 𝑠 = 𝐾 ) → ( ( ( 𝑎 ‘ 𝑦 ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑟 ‘ 𝑦 ) 〉 · ( 𝑠 ‘ 𝑦 ) ) ( ( 𝑥 ( 2nd ‘ 𝑓 ) 𝑦 ) ‘ ℎ ) ) = ( ( ( 𝑥 ( 2nd ‘ 𝑔 ) 𝑦 ) ‘ ℎ ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑠 ‘ 𝑥 ) 〉 · ( 𝑠 ‘ 𝑦 ) ) ( 𝑎 ‘ 𝑥 ) ) ↔ ( ( 𝑎 ‘ 𝑦 ) ( 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) 〉 · ( 𝐾 ‘ 𝑦 ) ) ( ( 𝑥 𝐺 𝑦 ) ‘ ℎ ) ) = ( ( ( 𝑥 𝐿 𝑦 ) ‘ ℎ ) ( 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐾 ‘ 𝑥 ) 〉 · ( 𝐾 ‘ 𝑦 ) ) ( 𝑎 ‘ 𝑥 ) ) ) ) |
| 62 | 61 | ralbidv | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 = 〈 𝐹 , 𝐺 〉 ∧ 𝑔 = 〈 𝐾 , 𝐿 〉 ) ) ∧ 𝑟 = 𝐹 ) ∧ 𝑠 = 𝐾 ) → ( ∀ ℎ ∈ ( 𝑥 𝐻 𝑦 ) ( ( 𝑎 ‘ 𝑦 ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑟 ‘ 𝑦 ) 〉 · ( 𝑠 ‘ 𝑦 ) ) ( ( 𝑥 ( 2nd ‘ 𝑓 ) 𝑦 ) ‘ ℎ ) ) = ( ( ( 𝑥 ( 2nd ‘ 𝑔 ) 𝑦 ) ‘ ℎ ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑠 ‘ 𝑥 ) 〉 · ( 𝑠 ‘ 𝑦 ) ) ( 𝑎 ‘ 𝑥 ) ) ↔ ∀ ℎ ∈ ( 𝑥 𝐻 𝑦 ) ( ( 𝑎 ‘ 𝑦 ) ( 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) 〉 · ( 𝐾 ‘ 𝑦 ) ) ( ( 𝑥 𝐺 𝑦 ) ‘ ℎ ) ) = ( ( ( 𝑥 𝐿 𝑦 ) ‘ ℎ ) ( 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐾 ‘ 𝑥 ) 〉 · ( 𝐾 ‘ 𝑦 ) ) ( 𝑎 ‘ 𝑥 ) ) ) ) |
| 63 | 62 | 2ralbidv | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 = 〈 𝐹 , 𝐺 〉 ∧ 𝑔 = 〈 𝐾 , 𝐿 〉 ) ) ∧ 𝑟 = 𝐹 ) ∧ 𝑠 = 𝐾 ) → ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∀ ℎ ∈ ( 𝑥 𝐻 𝑦 ) ( ( 𝑎 ‘ 𝑦 ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑟 ‘ 𝑦 ) 〉 · ( 𝑠 ‘ 𝑦 ) ) ( ( 𝑥 ( 2nd ‘ 𝑓 ) 𝑦 ) ‘ ℎ ) ) = ( ( ( 𝑥 ( 2nd ‘ 𝑔 ) 𝑦 ) ‘ ℎ ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑠 ‘ 𝑥 ) 〉 · ( 𝑠 ‘ 𝑦 ) ) ( 𝑎 ‘ 𝑥 ) ) ↔ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∀ ℎ ∈ ( 𝑥 𝐻 𝑦 ) ( ( 𝑎 ‘ 𝑦 ) ( 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) 〉 · ( 𝐾 ‘ 𝑦 ) ) ( ( 𝑥 𝐺 𝑦 ) ‘ ℎ ) ) = ( ( ( 𝑥 𝐿 𝑦 ) ‘ ℎ ) ( 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐾 ‘ 𝑥 ) 〉 · ( 𝐾 ‘ 𝑦 ) ) ( 𝑎 ‘ 𝑥 ) ) ) ) |
| 64 | 34 63 | rabeqbidv | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 = 〈 𝐹 , 𝐺 〉 ∧ 𝑔 = 〈 𝐾 , 𝐿 〉 ) ) ∧ 𝑟 = 𝐹 ) ∧ 𝑠 = 𝐾 ) → { 𝑎 ∈ X 𝑥 ∈ 𝐵 ( ( 𝑟 ‘ 𝑥 ) 𝐽 ( 𝑠 ‘ 𝑥 ) ) ∣ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∀ ℎ ∈ ( 𝑥 𝐻 𝑦 ) ( ( 𝑎 ‘ 𝑦 ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑟 ‘ 𝑦 ) 〉 · ( 𝑠 ‘ 𝑦 ) ) ( ( 𝑥 ( 2nd ‘ 𝑓 ) 𝑦 ) ‘ ℎ ) ) = ( ( ( 𝑥 ( 2nd ‘ 𝑔 ) 𝑦 ) ‘ ℎ ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑠 ‘ 𝑥 ) 〉 · ( 𝑠 ‘ 𝑦 ) ) ( 𝑎 ‘ 𝑥 ) ) } = { 𝑎 ∈ X 𝑥 ∈ 𝐵 ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐾 ‘ 𝑥 ) ) ∣ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∀ ℎ ∈ ( 𝑥 𝐻 𝑦 ) ( ( 𝑎 ‘ 𝑦 ) ( 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) 〉 · ( 𝐾 ‘ 𝑦 ) ) ( ( 𝑥 𝐺 𝑦 ) ‘ ℎ ) ) = ( ( ( 𝑥 𝐿 𝑦 ) ‘ ℎ ) ( 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐾 ‘ 𝑥 ) 〉 · ( 𝐾 ‘ 𝑦 ) ) ( 𝑎 ‘ 𝑥 ) ) } ) |
| 65 | 20 28 64 | csbied2 | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 = 〈 𝐹 , 𝐺 〉 ∧ 𝑔 = 〈 𝐾 , 𝐿 〉 ) ) ∧ 𝑟 = 𝐹 ) → ⦋ ( 1st ‘ 𝑔 ) / 𝑠 ⦌ { 𝑎 ∈ X 𝑥 ∈ 𝐵 ( ( 𝑟 ‘ 𝑥 ) 𝐽 ( 𝑠 ‘ 𝑥 ) ) ∣ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∀ ℎ ∈ ( 𝑥 𝐻 𝑦 ) ( ( 𝑎 ‘ 𝑦 ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑟 ‘ 𝑦 ) 〉 · ( 𝑠 ‘ 𝑦 ) ) ( ( 𝑥 ( 2nd ‘ 𝑓 ) 𝑦 ) ‘ ℎ ) ) = ( ( ( 𝑥 ( 2nd ‘ 𝑔 ) 𝑦 ) ‘ ℎ ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑠 ‘ 𝑥 ) 〉 · ( 𝑠 ‘ 𝑦 ) ) ( 𝑎 ‘ 𝑥 ) ) } = { 𝑎 ∈ X 𝑥 ∈ 𝐵 ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐾 ‘ 𝑥 ) ) ∣ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∀ ℎ ∈ ( 𝑥 𝐻 𝑦 ) ( ( 𝑎 ‘ 𝑦 ) ( 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) 〉 · ( 𝐾 ‘ 𝑦 ) ) ( ( 𝑥 𝐺 𝑦 ) ‘ ℎ ) ) = ( ( ( 𝑥 𝐿 𝑦 ) ‘ ℎ ) ( 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐾 ‘ 𝑥 ) 〉 · ( 𝐾 ‘ 𝑦 ) ) ( 𝑎 ‘ 𝑥 ) ) } ) |
| 66 | 10 19 65 | csbied2 | ⊢ ( ( 𝜑 ∧ ( 𝑓 = 〈 𝐹 , 𝐺 〉 ∧ 𝑔 = 〈 𝐾 , 𝐿 〉 ) ) → ⦋ ( 1st ‘ 𝑓 ) / 𝑟 ⦌ ⦋ ( 1st ‘ 𝑔 ) / 𝑠 ⦌ { 𝑎 ∈ X 𝑥 ∈ 𝐵 ( ( 𝑟 ‘ 𝑥 ) 𝐽 ( 𝑠 ‘ 𝑥 ) ) ∣ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∀ ℎ ∈ ( 𝑥 𝐻 𝑦 ) ( ( 𝑎 ‘ 𝑦 ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑟 ‘ 𝑦 ) 〉 · ( 𝑠 ‘ 𝑦 ) ) ( ( 𝑥 ( 2nd ‘ 𝑓 ) 𝑦 ) ‘ ℎ ) ) = ( ( ( 𝑥 ( 2nd ‘ 𝑔 ) 𝑦 ) ‘ ℎ ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑠 ‘ 𝑥 ) 〉 · ( 𝑠 ‘ 𝑦 ) ) ( 𝑎 ‘ 𝑥 ) ) } = { 𝑎 ∈ X 𝑥 ∈ 𝐵 ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐾 ‘ 𝑥 ) ) ∣ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∀ ℎ ∈ ( 𝑥 𝐻 𝑦 ) ( ( 𝑎 ‘ 𝑦 ) ( 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) 〉 · ( 𝐾 ‘ 𝑦 ) ) ( ( 𝑥 𝐺 𝑦 ) ‘ ℎ ) ) = ( ( ( 𝑥 𝐿 𝑦 ) ‘ ℎ ) ( 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐾 ‘ 𝑥 ) 〉 · ( 𝐾 ‘ 𝑦 ) ) ( 𝑎 ‘ 𝑥 ) ) } ) |
| 67 | df-br | ⊢ ( 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ↔ 〈 𝐹 , 𝐺 〉 ∈ ( 𝐶 Func 𝐷 ) ) | |
| 68 | 6 67 | sylib | ⊢ ( 𝜑 → 〈 𝐹 , 𝐺 〉 ∈ ( 𝐶 Func 𝐷 ) ) |
| 69 | df-br | ⊢ ( 𝐾 ( 𝐶 Func 𝐷 ) 𝐿 ↔ 〈 𝐾 , 𝐿 〉 ∈ ( 𝐶 Func 𝐷 ) ) | |
| 70 | 7 69 | sylib | ⊢ ( 𝜑 → 〈 𝐾 , 𝐿 〉 ∈ ( 𝐶 Func 𝐷 ) ) |
| 71 | ovex | ⊢ ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐾 ‘ 𝑥 ) ) ∈ V | |
| 72 | 71 | rgenw | ⊢ ∀ 𝑥 ∈ 𝐵 ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐾 ‘ 𝑥 ) ) ∈ V |
| 73 | ixpexg | ⊢ ( ∀ 𝑥 ∈ 𝐵 ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐾 ‘ 𝑥 ) ) ∈ V → X 𝑥 ∈ 𝐵 ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐾 ‘ 𝑥 ) ) ∈ V ) | |
| 74 | 72 73 | ax-mp | ⊢ X 𝑥 ∈ 𝐵 ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐾 ‘ 𝑥 ) ) ∈ V |
| 75 | 74 | rabex | ⊢ { 𝑎 ∈ X 𝑥 ∈ 𝐵 ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐾 ‘ 𝑥 ) ) ∣ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∀ ℎ ∈ ( 𝑥 𝐻 𝑦 ) ( ( 𝑎 ‘ 𝑦 ) ( 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) 〉 · ( 𝐾 ‘ 𝑦 ) ) ( ( 𝑥 𝐺 𝑦 ) ‘ ℎ ) ) = ( ( ( 𝑥 𝐿 𝑦 ) ‘ ℎ ) ( 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐾 ‘ 𝑥 ) 〉 · ( 𝐾 ‘ 𝑦 ) ) ( 𝑎 ‘ 𝑥 ) ) } ∈ V |
| 76 | 75 | a1i | ⊢ ( 𝜑 → { 𝑎 ∈ X 𝑥 ∈ 𝐵 ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐾 ‘ 𝑥 ) ) ∣ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∀ ℎ ∈ ( 𝑥 𝐻 𝑦 ) ( ( 𝑎 ‘ 𝑦 ) ( 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) 〉 · ( 𝐾 ‘ 𝑦 ) ) ( ( 𝑥 𝐺 𝑦 ) ‘ ℎ ) ) = ( ( ( 𝑥 𝐿 𝑦 ) ‘ ℎ ) ( 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐾 ‘ 𝑥 ) 〉 · ( 𝐾 ‘ 𝑦 ) ) ( 𝑎 ‘ 𝑥 ) ) } ∈ V ) |
| 77 | 9 66 68 70 76 | ovmpod | ⊢ ( 𝜑 → ( 〈 𝐹 , 𝐺 〉 𝑁 〈 𝐾 , 𝐿 〉 ) = { 𝑎 ∈ X 𝑥 ∈ 𝐵 ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐾 ‘ 𝑥 ) ) ∣ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∀ ℎ ∈ ( 𝑥 𝐻 𝑦 ) ( ( 𝑎 ‘ 𝑦 ) ( 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) 〉 · ( 𝐾 ‘ 𝑦 ) ) ( ( 𝑥 𝐺 𝑦 ) ‘ ℎ ) ) = ( ( ( 𝑥 𝐿 𝑦 ) ‘ ℎ ) ( 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐾 ‘ 𝑥 ) 〉 · ( 𝐾 ‘ 𝑦 ) ) ( 𝑎 ‘ 𝑥 ) ) } ) |
| 78 | 77 | eleq2d | ⊢ ( 𝜑 → ( 𝐴 ∈ ( 〈 𝐹 , 𝐺 〉 𝑁 〈 𝐾 , 𝐿 〉 ) ↔ 𝐴 ∈ { 𝑎 ∈ X 𝑥 ∈ 𝐵 ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐾 ‘ 𝑥 ) ) ∣ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∀ ℎ ∈ ( 𝑥 𝐻 𝑦 ) ( ( 𝑎 ‘ 𝑦 ) ( 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) 〉 · ( 𝐾 ‘ 𝑦 ) ) ( ( 𝑥 𝐺 𝑦 ) ‘ ℎ ) ) = ( ( ( 𝑥 𝐿 𝑦 ) ‘ ℎ ) ( 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐾 ‘ 𝑥 ) 〉 · ( 𝐾 ‘ 𝑦 ) ) ( 𝑎 ‘ 𝑥 ) ) } ) ) |
| 79 | fveq1 | ⊢ ( 𝑎 = 𝐴 → ( 𝑎 ‘ 𝑦 ) = ( 𝐴 ‘ 𝑦 ) ) | |
| 80 | 79 | oveq1d | ⊢ ( 𝑎 = 𝐴 → ( ( 𝑎 ‘ 𝑦 ) ( 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) 〉 · ( 𝐾 ‘ 𝑦 ) ) ( ( 𝑥 𝐺 𝑦 ) ‘ ℎ ) ) = ( ( 𝐴 ‘ 𝑦 ) ( 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) 〉 · ( 𝐾 ‘ 𝑦 ) ) ( ( 𝑥 𝐺 𝑦 ) ‘ ℎ ) ) ) |
| 81 | fveq1 | ⊢ ( 𝑎 = 𝐴 → ( 𝑎 ‘ 𝑥 ) = ( 𝐴 ‘ 𝑥 ) ) | |
| 82 | 81 | oveq2d | ⊢ ( 𝑎 = 𝐴 → ( ( ( 𝑥 𝐿 𝑦 ) ‘ ℎ ) ( 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐾 ‘ 𝑥 ) 〉 · ( 𝐾 ‘ 𝑦 ) ) ( 𝑎 ‘ 𝑥 ) ) = ( ( ( 𝑥 𝐿 𝑦 ) ‘ ℎ ) ( 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐾 ‘ 𝑥 ) 〉 · ( 𝐾 ‘ 𝑦 ) ) ( 𝐴 ‘ 𝑥 ) ) ) |
| 83 | 80 82 | eqeq12d | ⊢ ( 𝑎 = 𝐴 → ( ( ( 𝑎 ‘ 𝑦 ) ( 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) 〉 · ( 𝐾 ‘ 𝑦 ) ) ( ( 𝑥 𝐺 𝑦 ) ‘ ℎ ) ) = ( ( ( 𝑥 𝐿 𝑦 ) ‘ ℎ ) ( 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐾 ‘ 𝑥 ) 〉 · ( 𝐾 ‘ 𝑦 ) ) ( 𝑎 ‘ 𝑥 ) ) ↔ ( ( 𝐴 ‘ 𝑦 ) ( 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) 〉 · ( 𝐾 ‘ 𝑦 ) ) ( ( 𝑥 𝐺 𝑦 ) ‘ ℎ ) ) = ( ( ( 𝑥 𝐿 𝑦 ) ‘ ℎ ) ( 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐾 ‘ 𝑥 ) 〉 · ( 𝐾 ‘ 𝑦 ) ) ( 𝐴 ‘ 𝑥 ) ) ) ) |
| 84 | 83 | ralbidv | ⊢ ( 𝑎 = 𝐴 → ( ∀ ℎ ∈ ( 𝑥 𝐻 𝑦 ) ( ( 𝑎 ‘ 𝑦 ) ( 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) 〉 · ( 𝐾 ‘ 𝑦 ) ) ( ( 𝑥 𝐺 𝑦 ) ‘ ℎ ) ) = ( ( ( 𝑥 𝐿 𝑦 ) ‘ ℎ ) ( 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐾 ‘ 𝑥 ) 〉 · ( 𝐾 ‘ 𝑦 ) ) ( 𝑎 ‘ 𝑥 ) ) ↔ ∀ ℎ ∈ ( 𝑥 𝐻 𝑦 ) ( ( 𝐴 ‘ 𝑦 ) ( 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) 〉 · ( 𝐾 ‘ 𝑦 ) ) ( ( 𝑥 𝐺 𝑦 ) ‘ ℎ ) ) = ( ( ( 𝑥 𝐿 𝑦 ) ‘ ℎ ) ( 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐾 ‘ 𝑥 ) 〉 · ( 𝐾 ‘ 𝑦 ) ) ( 𝐴 ‘ 𝑥 ) ) ) ) |
| 85 | 84 | 2ralbidv | ⊢ ( 𝑎 = 𝐴 → ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∀ ℎ ∈ ( 𝑥 𝐻 𝑦 ) ( ( 𝑎 ‘ 𝑦 ) ( 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) 〉 · ( 𝐾 ‘ 𝑦 ) ) ( ( 𝑥 𝐺 𝑦 ) ‘ ℎ ) ) = ( ( ( 𝑥 𝐿 𝑦 ) ‘ ℎ ) ( 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐾 ‘ 𝑥 ) 〉 · ( 𝐾 ‘ 𝑦 ) ) ( 𝑎 ‘ 𝑥 ) ) ↔ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∀ ℎ ∈ ( 𝑥 𝐻 𝑦 ) ( ( 𝐴 ‘ 𝑦 ) ( 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) 〉 · ( 𝐾 ‘ 𝑦 ) ) ( ( 𝑥 𝐺 𝑦 ) ‘ ℎ ) ) = ( ( ( 𝑥 𝐿 𝑦 ) ‘ ℎ ) ( 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐾 ‘ 𝑥 ) 〉 · ( 𝐾 ‘ 𝑦 ) ) ( 𝐴 ‘ 𝑥 ) ) ) ) |
| 86 | 85 | elrab | ⊢ ( 𝐴 ∈ { 𝑎 ∈ X 𝑥 ∈ 𝐵 ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐾 ‘ 𝑥 ) ) ∣ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∀ ℎ ∈ ( 𝑥 𝐻 𝑦 ) ( ( 𝑎 ‘ 𝑦 ) ( 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) 〉 · ( 𝐾 ‘ 𝑦 ) ) ( ( 𝑥 𝐺 𝑦 ) ‘ ℎ ) ) = ( ( ( 𝑥 𝐿 𝑦 ) ‘ ℎ ) ( 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐾 ‘ 𝑥 ) 〉 · ( 𝐾 ‘ 𝑦 ) ) ( 𝑎 ‘ 𝑥 ) ) } ↔ ( 𝐴 ∈ X 𝑥 ∈ 𝐵 ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐾 ‘ 𝑥 ) ) ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∀ ℎ ∈ ( 𝑥 𝐻 𝑦 ) ( ( 𝐴 ‘ 𝑦 ) ( 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) 〉 · ( 𝐾 ‘ 𝑦 ) ) ( ( 𝑥 𝐺 𝑦 ) ‘ ℎ ) ) = ( ( ( 𝑥 𝐿 𝑦 ) ‘ ℎ ) ( 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐾 ‘ 𝑥 ) 〉 · ( 𝐾 ‘ 𝑦 ) ) ( 𝐴 ‘ 𝑥 ) ) ) ) |
| 87 | 78 86 | bitrdi | ⊢ ( 𝜑 → ( 𝐴 ∈ ( 〈 𝐹 , 𝐺 〉 𝑁 〈 𝐾 , 𝐿 〉 ) ↔ ( 𝐴 ∈ X 𝑥 ∈ 𝐵 ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐾 ‘ 𝑥 ) ) ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∀ ℎ ∈ ( 𝑥 𝐻 𝑦 ) ( ( 𝐴 ‘ 𝑦 ) ( 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) 〉 · ( 𝐾 ‘ 𝑦 ) ) ( ( 𝑥 𝐺 𝑦 ) ‘ ℎ ) ) = ( ( ( 𝑥 𝐿 𝑦 ) ‘ ℎ ) ( 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐾 ‘ 𝑥 ) 〉 · ( 𝐾 ‘ 𝑦 ) ) ( 𝐴 ‘ 𝑥 ) ) ) ) ) |