This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The set of all (not necessarily closed) linear subspaces of a left module or left vector space. (Contributed by NM, 8-Dec-2013) (Revised by Mario Carneiro, 15-Jul-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lssset.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | |
| lssset.b | ⊢ 𝐵 = ( Base ‘ 𝐹 ) | ||
| lssset.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | ||
| lssset.p | ⊢ + = ( +g ‘ 𝑊 ) | ||
| lssset.t | ⊢ · = ( ·𝑠 ‘ 𝑊 ) | ||
| lssset.s | ⊢ 𝑆 = ( LSubSp ‘ 𝑊 ) | ||
| Assertion | lssset | ⊢ ( 𝑊 ∈ 𝑋 → 𝑆 = { 𝑠 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ∀ 𝑥 ∈ 𝐵 ∀ 𝑎 ∈ 𝑠 ∀ 𝑏 ∈ 𝑠 ( ( 𝑥 · 𝑎 ) + 𝑏 ) ∈ 𝑠 } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lssset.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | |
| 2 | lssset.b | ⊢ 𝐵 = ( Base ‘ 𝐹 ) | |
| 3 | lssset.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| 4 | lssset.p | ⊢ + = ( +g ‘ 𝑊 ) | |
| 5 | lssset.t | ⊢ · = ( ·𝑠 ‘ 𝑊 ) | |
| 6 | lssset.s | ⊢ 𝑆 = ( LSubSp ‘ 𝑊 ) | |
| 7 | elex | ⊢ ( 𝑊 ∈ 𝑋 → 𝑊 ∈ V ) | |
| 8 | fveq2 | ⊢ ( 𝑤 = 𝑊 → ( Base ‘ 𝑤 ) = ( Base ‘ 𝑊 ) ) | |
| 9 | 8 3 | eqtr4di | ⊢ ( 𝑤 = 𝑊 → ( Base ‘ 𝑤 ) = 𝑉 ) |
| 10 | 9 | pweqd | ⊢ ( 𝑤 = 𝑊 → 𝒫 ( Base ‘ 𝑤 ) = 𝒫 𝑉 ) |
| 11 | 10 | difeq1d | ⊢ ( 𝑤 = 𝑊 → ( 𝒫 ( Base ‘ 𝑤 ) ∖ { ∅ } ) = ( 𝒫 𝑉 ∖ { ∅ } ) ) |
| 12 | fveq2 | ⊢ ( 𝑤 = 𝑊 → ( Scalar ‘ 𝑤 ) = ( Scalar ‘ 𝑊 ) ) | |
| 13 | 12 1 | eqtr4di | ⊢ ( 𝑤 = 𝑊 → ( Scalar ‘ 𝑤 ) = 𝐹 ) |
| 14 | 13 | fveq2d | ⊢ ( 𝑤 = 𝑊 → ( Base ‘ ( Scalar ‘ 𝑤 ) ) = ( Base ‘ 𝐹 ) ) |
| 15 | 14 2 | eqtr4di | ⊢ ( 𝑤 = 𝑊 → ( Base ‘ ( Scalar ‘ 𝑤 ) ) = 𝐵 ) |
| 16 | fveq2 | ⊢ ( 𝑤 = 𝑊 → ( ·𝑠 ‘ 𝑤 ) = ( ·𝑠 ‘ 𝑊 ) ) | |
| 17 | 16 5 | eqtr4di | ⊢ ( 𝑤 = 𝑊 → ( ·𝑠 ‘ 𝑤 ) = · ) |
| 18 | 17 | oveqd | ⊢ ( 𝑤 = 𝑊 → ( 𝑥 ( ·𝑠 ‘ 𝑤 ) 𝑎 ) = ( 𝑥 · 𝑎 ) ) |
| 19 | 18 | oveq1d | ⊢ ( 𝑤 = 𝑊 → ( ( 𝑥 ( ·𝑠 ‘ 𝑤 ) 𝑎 ) ( +g ‘ 𝑤 ) 𝑏 ) = ( ( 𝑥 · 𝑎 ) ( +g ‘ 𝑤 ) 𝑏 ) ) |
| 20 | fveq2 | ⊢ ( 𝑤 = 𝑊 → ( +g ‘ 𝑤 ) = ( +g ‘ 𝑊 ) ) | |
| 21 | 20 4 | eqtr4di | ⊢ ( 𝑤 = 𝑊 → ( +g ‘ 𝑤 ) = + ) |
| 22 | 21 | oveqd | ⊢ ( 𝑤 = 𝑊 → ( ( 𝑥 · 𝑎 ) ( +g ‘ 𝑤 ) 𝑏 ) = ( ( 𝑥 · 𝑎 ) + 𝑏 ) ) |
| 23 | 19 22 | eqtrd | ⊢ ( 𝑤 = 𝑊 → ( ( 𝑥 ( ·𝑠 ‘ 𝑤 ) 𝑎 ) ( +g ‘ 𝑤 ) 𝑏 ) = ( ( 𝑥 · 𝑎 ) + 𝑏 ) ) |
| 24 | 23 | eleq1d | ⊢ ( 𝑤 = 𝑊 → ( ( ( 𝑥 ( ·𝑠 ‘ 𝑤 ) 𝑎 ) ( +g ‘ 𝑤 ) 𝑏 ) ∈ 𝑠 ↔ ( ( 𝑥 · 𝑎 ) + 𝑏 ) ∈ 𝑠 ) ) |
| 25 | 24 | 2ralbidv | ⊢ ( 𝑤 = 𝑊 → ( ∀ 𝑎 ∈ 𝑠 ∀ 𝑏 ∈ 𝑠 ( ( 𝑥 ( ·𝑠 ‘ 𝑤 ) 𝑎 ) ( +g ‘ 𝑤 ) 𝑏 ) ∈ 𝑠 ↔ ∀ 𝑎 ∈ 𝑠 ∀ 𝑏 ∈ 𝑠 ( ( 𝑥 · 𝑎 ) + 𝑏 ) ∈ 𝑠 ) ) |
| 26 | 15 25 | raleqbidv | ⊢ ( 𝑤 = 𝑊 → ( ∀ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑤 ) ) ∀ 𝑎 ∈ 𝑠 ∀ 𝑏 ∈ 𝑠 ( ( 𝑥 ( ·𝑠 ‘ 𝑤 ) 𝑎 ) ( +g ‘ 𝑤 ) 𝑏 ) ∈ 𝑠 ↔ ∀ 𝑥 ∈ 𝐵 ∀ 𝑎 ∈ 𝑠 ∀ 𝑏 ∈ 𝑠 ( ( 𝑥 · 𝑎 ) + 𝑏 ) ∈ 𝑠 ) ) |
| 27 | 11 26 | rabeqbidv | ⊢ ( 𝑤 = 𝑊 → { 𝑠 ∈ ( 𝒫 ( Base ‘ 𝑤 ) ∖ { ∅ } ) ∣ ∀ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑤 ) ) ∀ 𝑎 ∈ 𝑠 ∀ 𝑏 ∈ 𝑠 ( ( 𝑥 ( ·𝑠 ‘ 𝑤 ) 𝑎 ) ( +g ‘ 𝑤 ) 𝑏 ) ∈ 𝑠 } = { 𝑠 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ∀ 𝑥 ∈ 𝐵 ∀ 𝑎 ∈ 𝑠 ∀ 𝑏 ∈ 𝑠 ( ( 𝑥 · 𝑎 ) + 𝑏 ) ∈ 𝑠 } ) |
| 28 | df-lss | ⊢ LSubSp = ( 𝑤 ∈ V ↦ { 𝑠 ∈ ( 𝒫 ( Base ‘ 𝑤 ) ∖ { ∅ } ) ∣ ∀ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑤 ) ) ∀ 𝑎 ∈ 𝑠 ∀ 𝑏 ∈ 𝑠 ( ( 𝑥 ( ·𝑠 ‘ 𝑤 ) 𝑎 ) ( +g ‘ 𝑤 ) 𝑏 ) ∈ 𝑠 } ) | |
| 29 | 3 | fvexi | ⊢ 𝑉 ∈ V |
| 30 | 29 | pwex | ⊢ 𝒫 𝑉 ∈ V |
| 31 | 30 | difexi | ⊢ ( 𝒫 𝑉 ∖ { ∅ } ) ∈ V |
| 32 | 31 | rabex | ⊢ { 𝑠 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ∀ 𝑥 ∈ 𝐵 ∀ 𝑎 ∈ 𝑠 ∀ 𝑏 ∈ 𝑠 ( ( 𝑥 · 𝑎 ) + 𝑏 ) ∈ 𝑠 } ∈ V |
| 33 | 27 28 32 | fvmpt | ⊢ ( 𝑊 ∈ V → ( LSubSp ‘ 𝑊 ) = { 𝑠 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ∀ 𝑥 ∈ 𝐵 ∀ 𝑎 ∈ 𝑠 ∀ 𝑏 ∈ 𝑠 ( ( 𝑥 · 𝑎 ) + 𝑏 ) ∈ 𝑠 } ) |
| 34 | 7 33 | syl | ⊢ ( 𝑊 ∈ 𝑋 → ( LSubSp ‘ 𝑊 ) = { 𝑠 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ∀ 𝑥 ∈ 𝐵 ∀ 𝑎 ∈ 𝑠 ∀ 𝑏 ∈ 𝑠 ( ( 𝑥 · 𝑎 ) + 𝑏 ) ∈ 𝑠 } ) |
| 35 | 6 34 | eqtrid | ⊢ ( 𝑊 ∈ 𝑋 → 𝑆 = { 𝑠 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ∀ 𝑥 ∈ 𝐵 ∀ 𝑎 ∈ 𝑠 ∀ 𝑏 ∈ 𝑠 ( ( 𝑥 · 𝑎 ) + 𝑏 ) ∈ 𝑠 } ) |