This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Property of being a principal ideal. (Contributed by Stefan O'Rear, 3-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lpival.p | |- P = ( LPIdeal ` R ) |
|
| lpival.k | |- K = ( RSpan ` R ) |
||
| lpival.b | |- B = ( Base ` R ) |
||
| Assertion | islpidl | |- ( R e. Ring -> ( I e. P <-> E. g e. B I = ( K ` { g } ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lpival.p | |- P = ( LPIdeal ` R ) |
|
| 2 | lpival.k | |- K = ( RSpan ` R ) |
|
| 3 | lpival.b | |- B = ( Base ` R ) |
|
| 4 | 1 2 3 | lpival | |- ( R e. Ring -> P = U_ g e. B { ( K ` { g } ) } ) |
| 5 | 4 | eleq2d | |- ( R e. Ring -> ( I e. P <-> I e. U_ g e. B { ( K ` { g } ) } ) ) |
| 6 | eliun | |- ( I e. U_ g e. B { ( K ` { g } ) } <-> E. g e. B I e. { ( K ` { g } ) } ) |
|
| 7 | fvex | |- ( K ` { g } ) e. _V |
|
| 8 | 7 | elsn2 | |- ( I e. { ( K ` { g } ) } <-> I = ( K ` { g } ) ) |
| 9 | 8 | rexbii | |- ( E. g e. B I e. { ( K ` { g } ) } <-> E. g e. B I = ( K ` { g } ) ) |
| 10 | 6 9 | bitri | |- ( I e. U_ g e. B { ( K ` { g } ) } <-> E. g e. B I = ( K ` { g } ) ) |
| 11 | 5 10 | bitrdi | |- ( R e. Ring -> ( I e. P <-> E. g e. B I = ( K ` { g } ) ) ) |