This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The set of points in a Hilbert lattice. (Contributed by NM, 2-Oct-2011) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pointset.a | ⊢ 𝐴 = ( Atoms ‘ 𝐾 ) | |
| pointset.p | ⊢ 𝑃 = ( Points ‘ 𝐾 ) | ||
| Assertion | pointsetN | ⊢ ( 𝐾 ∈ 𝐵 → 𝑃 = { 𝑝 ∣ ∃ 𝑎 ∈ 𝐴 𝑝 = { 𝑎 } } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pointset.a | ⊢ 𝐴 = ( Atoms ‘ 𝐾 ) | |
| 2 | pointset.p | ⊢ 𝑃 = ( Points ‘ 𝐾 ) | |
| 3 | elex | ⊢ ( 𝐾 ∈ 𝐵 → 𝐾 ∈ V ) | |
| 4 | fveq2 | ⊢ ( 𝑘 = 𝐾 → ( Atoms ‘ 𝑘 ) = ( Atoms ‘ 𝐾 ) ) | |
| 5 | 4 1 | eqtr4di | ⊢ ( 𝑘 = 𝐾 → ( Atoms ‘ 𝑘 ) = 𝐴 ) |
| 6 | 5 | rexeqdv | ⊢ ( 𝑘 = 𝐾 → ( ∃ 𝑎 ∈ ( Atoms ‘ 𝑘 ) 𝑝 = { 𝑎 } ↔ ∃ 𝑎 ∈ 𝐴 𝑝 = { 𝑎 } ) ) |
| 7 | 6 | abbidv | ⊢ ( 𝑘 = 𝐾 → { 𝑝 ∣ ∃ 𝑎 ∈ ( Atoms ‘ 𝑘 ) 𝑝 = { 𝑎 } } = { 𝑝 ∣ ∃ 𝑎 ∈ 𝐴 𝑝 = { 𝑎 } } ) |
| 8 | df-pointsN | ⊢ Points = ( 𝑘 ∈ V ↦ { 𝑝 ∣ ∃ 𝑎 ∈ ( Atoms ‘ 𝑘 ) 𝑝 = { 𝑎 } } ) | |
| 9 | 1 | fvexi | ⊢ 𝐴 ∈ V |
| 10 | 9 | abrexex | ⊢ { 𝑝 ∣ ∃ 𝑎 ∈ 𝐴 𝑝 = { 𝑎 } } ∈ V |
| 11 | 7 8 10 | fvmpt | ⊢ ( 𝐾 ∈ V → ( Points ‘ 𝐾 ) = { 𝑝 ∣ ∃ 𝑎 ∈ 𝐴 𝑝 = { 𝑎 } } ) |
| 12 | 2 11 | eqtrid | ⊢ ( 𝐾 ∈ V → 𝑃 = { 𝑝 ∣ ∃ 𝑎 ∈ 𝐴 𝑝 = { 𝑎 } } ) |
| 13 | 3 12 | syl | ⊢ ( 𝐾 ∈ 𝐵 → 𝑃 = { 𝑝 ∣ ∃ 𝑎 ∈ 𝐴 𝑝 = { 𝑎 } } ) |