This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Condition implying "is a line". (Contributed by NM, 3-Feb-2012)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isline.l | |- .<_ = ( le ` K ) |
|
| isline.j | |- .\/ = ( join ` K ) |
||
| isline.a | |- A = ( Atoms ` K ) |
||
| isline.n | |- N = ( Lines ` K ) |
||
| Assertion | islinei | |- ( ( ( K e. D /\ Q e. A /\ R e. A ) /\ ( Q =/= R /\ X = { p e. A | p .<_ ( Q .\/ R ) } ) ) -> X e. N ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isline.l | |- .<_ = ( le ` K ) |
|
| 2 | isline.j | |- .\/ = ( join ` K ) |
|
| 3 | isline.a | |- A = ( Atoms ` K ) |
|
| 4 | isline.n | |- N = ( Lines ` K ) |
|
| 5 | simpl2 | |- ( ( ( K e. D /\ Q e. A /\ R e. A ) /\ ( Q =/= R /\ X = { p e. A | p .<_ ( Q .\/ R ) } ) ) -> Q e. A ) |
|
| 6 | simpl3 | |- ( ( ( K e. D /\ Q e. A /\ R e. A ) /\ ( Q =/= R /\ X = { p e. A | p .<_ ( Q .\/ R ) } ) ) -> R e. A ) |
|
| 7 | simpr | |- ( ( ( K e. D /\ Q e. A /\ R e. A ) /\ ( Q =/= R /\ X = { p e. A | p .<_ ( Q .\/ R ) } ) ) -> ( Q =/= R /\ X = { p e. A | p .<_ ( Q .\/ R ) } ) ) |
|
| 8 | neeq1 | |- ( q = Q -> ( q =/= r <-> Q =/= r ) ) |
|
| 9 | oveq1 | |- ( q = Q -> ( q .\/ r ) = ( Q .\/ r ) ) |
|
| 10 | 9 | breq2d | |- ( q = Q -> ( p .<_ ( q .\/ r ) <-> p .<_ ( Q .\/ r ) ) ) |
| 11 | 10 | rabbidv | |- ( q = Q -> { p e. A | p .<_ ( q .\/ r ) } = { p e. A | p .<_ ( Q .\/ r ) } ) |
| 12 | 11 | eqeq2d | |- ( q = Q -> ( X = { p e. A | p .<_ ( q .\/ r ) } <-> X = { p e. A | p .<_ ( Q .\/ r ) } ) ) |
| 13 | 8 12 | anbi12d | |- ( q = Q -> ( ( q =/= r /\ X = { p e. A | p .<_ ( q .\/ r ) } ) <-> ( Q =/= r /\ X = { p e. A | p .<_ ( Q .\/ r ) } ) ) ) |
| 14 | neeq2 | |- ( r = R -> ( Q =/= r <-> Q =/= R ) ) |
|
| 15 | oveq2 | |- ( r = R -> ( Q .\/ r ) = ( Q .\/ R ) ) |
|
| 16 | 15 | breq2d | |- ( r = R -> ( p .<_ ( Q .\/ r ) <-> p .<_ ( Q .\/ R ) ) ) |
| 17 | 16 | rabbidv | |- ( r = R -> { p e. A | p .<_ ( Q .\/ r ) } = { p e. A | p .<_ ( Q .\/ R ) } ) |
| 18 | 17 | eqeq2d | |- ( r = R -> ( X = { p e. A | p .<_ ( Q .\/ r ) } <-> X = { p e. A | p .<_ ( Q .\/ R ) } ) ) |
| 19 | 14 18 | anbi12d | |- ( r = R -> ( ( Q =/= r /\ X = { p e. A | p .<_ ( Q .\/ r ) } ) <-> ( Q =/= R /\ X = { p e. A | p .<_ ( Q .\/ R ) } ) ) ) |
| 20 | 13 19 | rspc2ev | |- ( ( Q e. A /\ R e. A /\ ( Q =/= R /\ X = { p e. A | p .<_ ( Q .\/ R ) } ) ) -> E. q e. A E. r e. A ( q =/= r /\ X = { p e. A | p .<_ ( q .\/ r ) } ) ) |
| 21 | 5 6 7 20 | syl3anc | |- ( ( ( K e. D /\ Q e. A /\ R e. A ) /\ ( Q =/= R /\ X = { p e. A | p .<_ ( Q .\/ R ) } ) ) -> E. q e. A E. r e. A ( q =/= r /\ X = { p e. A | p .<_ ( q .\/ r ) } ) ) |
| 22 | simpl1 | |- ( ( ( K e. D /\ Q e. A /\ R e. A ) /\ ( Q =/= R /\ X = { p e. A | p .<_ ( Q .\/ R ) } ) ) -> K e. D ) |
|
| 23 | 1 2 3 4 | isline | |- ( K e. D -> ( X e. N <-> E. q e. A E. r e. A ( q =/= r /\ X = { p e. A | p .<_ ( q .\/ r ) } ) ) ) |
| 24 | 22 23 | syl | |- ( ( ( K e. D /\ Q e. A /\ R e. A ) /\ ( Q =/= R /\ X = { p e. A | p .<_ ( Q .\/ R ) } ) ) -> ( X e. N <-> E. q e. A E. r e. A ( q =/= r /\ X = { p e. A | p .<_ ( q .\/ r ) } ) ) ) |
| 25 | 21 24 | mpbird | |- ( ( ( K e. D /\ Q e. A /\ R e. A ) /\ ( Q =/= R /\ X = { p e. A | p .<_ ( Q .\/ R ) } ) ) -> X e. N ) |