This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Definition of line in terms of original lattice elements. (Contributed by NM, 29-Apr-2012)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isline3.b | |- B = ( Base ` K ) |
|
| isline3.j | |- .\/ = ( join ` K ) |
||
| isline3.a | |- A = ( Atoms ` K ) |
||
| isline3.n | |- N = ( Lines ` K ) |
||
| isline3.m | |- M = ( pmap ` K ) |
||
| Assertion | isline3 | |- ( ( K e. HL /\ X e. B ) -> ( ( M ` X ) e. N <-> E. p e. A E. q e. A ( p =/= q /\ X = ( p .\/ q ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isline3.b | |- B = ( Base ` K ) |
|
| 2 | isline3.j | |- .\/ = ( join ` K ) |
|
| 3 | isline3.a | |- A = ( Atoms ` K ) |
|
| 4 | isline3.n | |- N = ( Lines ` K ) |
|
| 5 | isline3.m | |- M = ( pmap ` K ) |
|
| 6 | hllat | |- ( K e. HL -> K e. Lat ) |
|
| 7 | 6 | adantr | |- ( ( K e. HL /\ X e. B ) -> K e. Lat ) |
| 8 | 2 3 4 5 | isline2 | |- ( K e. Lat -> ( ( M ` X ) e. N <-> E. p e. A E. q e. A ( p =/= q /\ ( M ` X ) = ( M ` ( p .\/ q ) ) ) ) ) |
| 9 | 7 8 | syl | |- ( ( K e. HL /\ X e. B ) -> ( ( M ` X ) e. N <-> E. p e. A E. q e. A ( p =/= q /\ ( M ` X ) = ( M ` ( p .\/ q ) ) ) ) ) |
| 10 | simpll | |- ( ( ( K e. HL /\ X e. B ) /\ ( p e. A /\ q e. A ) ) -> K e. HL ) |
|
| 11 | simplr | |- ( ( ( K e. HL /\ X e. B ) /\ ( p e. A /\ q e. A ) ) -> X e. B ) |
|
| 12 | 6 | ad2antrr | |- ( ( ( K e. HL /\ X e. B ) /\ ( p e. A /\ q e. A ) ) -> K e. Lat ) |
| 13 | 1 3 | atbase | |- ( p e. A -> p e. B ) |
| 14 | 13 | ad2antrl | |- ( ( ( K e. HL /\ X e. B ) /\ ( p e. A /\ q e. A ) ) -> p e. B ) |
| 15 | 1 3 | atbase | |- ( q e. A -> q e. B ) |
| 16 | 15 | ad2antll | |- ( ( ( K e. HL /\ X e. B ) /\ ( p e. A /\ q e. A ) ) -> q e. B ) |
| 17 | 1 2 | latjcl | |- ( ( K e. Lat /\ p e. B /\ q e. B ) -> ( p .\/ q ) e. B ) |
| 18 | 12 14 16 17 | syl3anc | |- ( ( ( K e. HL /\ X e. B ) /\ ( p e. A /\ q e. A ) ) -> ( p .\/ q ) e. B ) |
| 19 | 1 5 | pmap11 | |- ( ( K e. HL /\ X e. B /\ ( p .\/ q ) e. B ) -> ( ( M ` X ) = ( M ` ( p .\/ q ) ) <-> X = ( p .\/ q ) ) ) |
| 20 | 10 11 18 19 | syl3anc | |- ( ( ( K e. HL /\ X e. B ) /\ ( p e. A /\ q e. A ) ) -> ( ( M ` X ) = ( M ` ( p .\/ q ) ) <-> X = ( p .\/ q ) ) ) |
| 21 | 20 | anbi2d | |- ( ( ( K e. HL /\ X e. B ) /\ ( p e. A /\ q e. A ) ) -> ( ( p =/= q /\ ( M ` X ) = ( M ` ( p .\/ q ) ) ) <-> ( p =/= q /\ X = ( p .\/ q ) ) ) ) |
| 22 | 21 | 2rexbidva | |- ( ( K e. HL /\ X e. B ) -> ( E. p e. A E. q e. A ( p =/= q /\ ( M ` X ) = ( M ` ( p .\/ q ) ) ) <-> E. p e. A E. q e. A ( p =/= q /\ X = ( p .\/ q ) ) ) ) |
| 23 | 9 22 | bitrd | |- ( ( K e. HL /\ X e. B ) -> ( ( M ` X ) e. N <-> E. p e. A E. q e. A ( p =/= q /\ X = ( p .\/ q ) ) ) ) |