This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Definition of line in terms of projective map. (Contributed by NM, 25-Jan-2012)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isline2.j | ⊢ ∨ = ( join ‘ 𝐾 ) | |
| isline2.a | ⊢ 𝐴 = ( Atoms ‘ 𝐾 ) | ||
| isline2.n | ⊢ 𝑁 = ( Lines ‘ 𝐾 ) | ||
| isline2.m | ⊢ 𝑀 = ( pmap ‘ 𝐾 ) | ||
| Assertion | isline2 | ⊢ ( 𝐾 ∈ Lat → ( 𝑋 ∈ 𝑁 ↔ ∃ 𝑝 ∈ 𝐴 ∃ 𝑞 ∈ 𝐴 ( 𝑝 ≠ 𝑞 ∧ 𝑋 = ( 𝑀 ‘ ( 𝑝 ∨ 𝑞 ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isline2.j | ⊢ ∨ = ( join ‘ 𝐾 ) | |
| 2 | isline2.a | ⊢ 𝐴 = ( Atoms ‘ 𝐾 ) | |
| 3 | isline2.n | ⊢ 𝑁 = ( Lines ‘ 𝐾 ) | |
| 4 | isline2.m | ⊢ 𝑀 = ( pmap ‘ 𝐾 ) | |
| 5 | eqid | ⊢ ( le ‘ 𝐾 ) = ( le ‘ 𝐾 ) | |
| 6 | 5 1 2 3 | isline | ⊢ ( 𝐾 ∈ Lat → ( 𝑋 ∈ 𝑁 ↔ ∃ 𝑝 ∈ 𝐴 ∃ 𝑞 ∈ 𝐴 ( 𝑝 ≠ 𝑞 ∧ 𝑋 = { 𝑟 ∈ 𝐴 ∣ 𝑟 ( le ‘ 𝐾 ) ( 𝑝 ∨ 𝑞 ) } ) ) ) |
| 7 | simpl | ⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑝 ∈ 𝐴 ∧ 𝑞 ∈ 𝐴 ) ) → 𝐾 ∈ Lat ) | |
| 8 | eqid | ⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) | |
| 9 | 8 2 | atbase | ⊢ ( 𝑝 ∈ 𝐴 → 𝑝 ∈ ( Base ‘ 𝐾 ) ) |
| 10 | 9 | ad2antrl | ⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑝 ∈ 𝐴 ∧ 𝑞 ∈ 𝐴 ) ) → 𝑝 ∈ ( Base ‘ 𝐾 ) ) |
| 11 | 8 2 | atbase | ⊢ ( 𝑞 ∈ 𝐴 → 𝑞 ∈ ( Base ‘ 𝐾 ) ) |
| 12 | 11 | ad2antll | ⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑝 ∈ 𝐴 ∧ 𝑞 ∈ 𝐴 ) ) → 𝑞 ∈ ( Base ‘ 𝐾 ) ) |
| 13 | 8 1 | latjcl | ⊢ ( ( 𝐾 ∈ Lat ∧ 𝑝 ∈ ( Base ‘ 𝐾 ) ∧ 𝑞 ∈ ( Base ‘ 𝐾 ) ) → ( 𝑝 ∨ 𝑞 ) ∈ ( Base ‘ 𝐾 ) ) |
| 14 | 7 10 12 13 | syl3anc | ⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑝 ∈ 𝐴 ∧ 𝑞 ∈ 𝐴 ) ) → ( 𝑝 ∨ 𝑞 ) ∈ ( Base ‘ 𝐾 ) ) |
| 15 | 8 5 2 4 | pmapval | ⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑝 ∨ 𝑞 ) ∈ ( Base ‘ 𝐾 ) ) → ( 𝑀 ‘ ( 𝑝 ∨ 𝑞 ) ) = { 𝑟 ∈ 𝐴 ∣ 𝑟 ( le ‘ 𝐾 ) ( 𝑝 ∨ 𝑞 ) } ) |
| 16 | 14 15 | syldan | ⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑝 ∈ 𝐴 ∧ 𝑞 ∈ 𝐴 ) ) → ( 𝑀 ‘ ( 𝑝 ∨ 𝑞 ) ) = { 𝑟 ∈ 𝐴 ∣ 𝑟 ( le ‘ 𝐾 ) ( 𝑝 ∨ 𝑞 ) } ) |
| 17 | 16 | eqeq2d | ⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑝 ∈ 𝐴 ∧ 𝑞 ∈ 𝐴 ) ) → ( 𝑋 = ( 𝑀 ‘ ( 𝑝 ∨ 𝑞 ) ) ↔ 𝑋 = { 𝑟 ∈ 𝐴 ∣ 𝑟 ( le ‘ 𝐾 ) ( 𝑝 ∨ 𝑞 ) } ) ) |
| 18 | 17 | anbi2d | ⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑝 ∈ 𝐴 ∧ 𝑞 ∈ 𝐴 ) ) → ( ( 𝑝 ≠ 𝑞 ∧ 𝑋 = ( 𝑀 ‘ ( 𝑝 ∨ 𝑞 ) ) ) ↔ ( 𝑝 ≠ 𝑞 ∧ 𝑋 = { 𝑟 ∈ 𝐴 ∣ 𝑟 ( le ‘ 𝐾 ) ( 𝑝 ∨ 𝑞 ) } ) ) ) |
| 19 | 18 | 2rexbidva | ⊢ ( 𝐾 ∈ Lat → ( ∃ 𝑝 ∈ 𝐴 ∃ 𝑞 ∈ 𝐴 ( 𝑝 ≠ 𝑞 ∧ 𝑋 = ( 𝑀 ‘ ( 𝑝 ∨ 𝑞 ) ) ) ↔ ∃ 𝑝 ∈ 𝐴 ∃ 𝑞 ∈ 𝐴 ( 𝑝 ≠ 𝑞 ∧ 𝑋 = { 𝑟 ∈ 𝐴 ∣ 𝑟 ( le ‘ 𝐾 ) ( 𝑝 ∨ 𝑞 ) } ) ) ) |
| 20 | 6 19 | bitr4d | ⊢ ( 𝐾 ∈ Lat → ( 𝑋 ∈ 𝑁 ↔ ∃ 𝑝 ∈ 𝐴 ∃ 𝑞 ∈ 𝐴 ( 𝑝 ≠ 𝑞 ∧ 𝑋 = ( 𝑀 ‘ ( 𝑝 ∨ 𝑞 ) ) ) ) ) |