This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Definition of line in terms of original lattice elements. (Contributed by NM, 16-Jun-2012) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isline4.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| isline4.c | ⊢ 𝐶 = ( ⋖ ‘ 𝐾 ) | ||
| isline4.a | ⊢ 𝐴 = ( Atoms ‘ 𝐾 ) | ||
| isline4.n | ⊢ 𝑁 = ( Lines ‘ 𝐾 ) | ||
| isline4.m | ⊢ 𝑀 = ( pmap ‘ 𝐾 ) | ||
| Assertion | isline4N | ⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ) → ( ( 𝑀 ‘ 𝑋 ) ∈ 𝑁 ↔ ∃ 𝑝 ∈ 𝐴 𝑝 𝐶 𝑋 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isline4.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| 2 | isline4.c | ⊢ 𝐶 = ( ⋖ ‘ 𝐾 ) | |
| 3 | isline4.a | ⊢ 𝐴 = ( Atoms ‘ 𝐾 ) | |
| 4 | isline4.n | ⊢ 𝑁 = ( Lines ‘ 𝐾 ) | |
| 5 | isline4.m | ⊢ 𝑀 = ( pmap ‘ 𝐾 ) | |
| 6 | eqid | ⊢ ( join ‘ 𝐾 ) = ( join ‘ 𝐾 ) | |
| 7 | 1 6 3 4 5 | isline3 | ⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ) → ( ( 𝑀 ‘ 𝑋 ) ∈ 𝑁 ↔ ∃ 𝑝 ∈ 𝐴 ∃ 𝑞 ∈ 𝐴 ( 𝑝 ≠ 𝑞 ∧ 𝑋 = ( 𝑝 ( join ‘ 𝐾 ) 𝑞 ) ) ) ) |
| 8 | simpll | ⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑝 ∈ 𝐴 ) → 𝐾 ∈ HL ) | |
| 9 | 1 3 | atbase | ⊢ ( 𝑝 ∈ 𝐴 → 𝑝 ∈ 𝐵 ) |
| 10 | 9 | adantl | ⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑝 ∈ 𝐴 ) → 𝑝 ∈ 𝐵 ) |
| 11 | simplr | ⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑝 ∈ 𝐴 ) → 𝑋 ∈ 𝐵 ) | |
| 12 | eqid | ⊢ ( le ‘ 𝐾 ) = ( le ‘ 𝐾 ) | |
| 13 | 1 12 6 2 3 | cvrval3 | ⊢ ( ( 𝐾 ∈ HL ∧ 𝑝 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) → ( 𝑝 𝐶 𝑋 ↔ ∃ 𝑞 ∈ 𝐴 ( ¬ 𝑞 ( le ‘ 𝐾 ) 𝑝 ∧ ( 𝑝 ( join ‘ 𝐾 ) 𝑞 ) = 𝑋 ) ) ) |
| 14 | 8 10 11 13 | syl3anc | ⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑝 ∈ 𝐴 ) → ( 𝑝 𝐶 𝑋 ↔ ∃ 𝑞 ∈ 𝐴 ( ¬ 𝑞 ( le ‘ 𝐾 ) 𝑝 ∧ ( 𝑝 ( join ‘ 𝐾 ) 𝑞 ) = 𝑋 ) ) ) |
| 15 | hlatl | ⊢ ( 𝐾 ∈ HL → 𝐾 ∈ AtLat ) | |
| 16 | 15 | ad3antrrr | ⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑝 ∈ 𝐴 ) ∧ 𝑞 ∈ 𝐴 ) → 𝐾 ∈ AtLat ) |
| 17 | simpr | ⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑝 ∈ 𝐴 ) ∧ 𝑞 ∈ 𝐴 ) → 𝑞 ∈ 𝐴 ) | |
| 18 | simplr | ⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑝 ∈ 𝐴 ) ∧ 𝑞 ∈ 𝐴 ) → 𝑝 ∈ 𝐴 ) | |
| 19 | 12 3 | atncmp | ⊢ ( ( 𝐾 ∈ AtLat ∧ 𝑞 ∈ 𝐴 ∧ 𝑝 ∈ 𝐴 ) → ( ¬ 𝑞 ( le ‘ 𝐾 ) 𝑝 ↔ 𝑞 ≠ 𝑝 ) ) |
| 20 | 16 17 18 19 | syl3anc | ⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑝 ∈ 𝐴 ) ∧ 𝑞 ∈ 𝐴 ) → ( ¬ 𝑞 ( le ‘ 𝐾 ) 𝑝 ↔ 𝑞 ≠ 𝑝 ) ) |
| 21 | necom | ⊢ ( 𝑞 ≠ 𝑝 ↔ 𝑝 ≠ 𝑞 ) | |
| 22 | 20 21 | bitrdi | ⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑝 ∈ 𝐴 ) ∧ 𝑞 ∈ 𝐴 ) → ( ¬ 𝑞 ( le ‘ 𝐾 ) 𝑝 ↔ 𝑝 ≠ 𝑞 ) ) |
| 23 | eqcom | ⊢ ( ( 𝑝 ( join ‘ 𝐾 ) 𝑞 ) = 𝑋 ↔ 𝑋 = ( 𝑝 ( join ‘ 𝐾 ) 𝑞 ) ) | |
| 24 | 23 | a1i | ⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑝 ∈ 𝐴 ) ∧ 𝑞 ∈ 𝐴 ) → ( ( 𝑝 ( join ‘ 𝐾 ) 𝑞 ) = 𝑋 ↔ 𝑋 = ( 𝑝 ( join ‘ 𝐾 ) 𝑞 ) ) ) |
| 25 | 22 24 | anbi12d | ⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑝 ∈ 𝐴 ) ∧ 𝑞 ∈ 𝐴 ) → ( ( ¬ 𝑞 ( le ‘ 𝐾 ) 𝑝 ∧ ( 𝑝 ( join ‘ 𝐾 ) 𝑞 ) = 𝑋 ) ↔ ( 𝑝 ≠ 𝑞 ∧ 𝑋 = ( 𝑝 ( join ‘ 𝐾 ) 𝑞 ) ) ) ) |
| 26 | 25 | rexbidva | ⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑝 ∈ 𝐴 ) → ( ∃ 𝑞 ∈ 𝐴 ( ¬ 𝑞 ( le ‘ 𝐾 ) 𝑝 ∧ ( 𝑝 ( join ‘ 𝐾 ) 𝑞 ) = 𝑋 ) ↔ ∃ 𝑞 ∈ 𝐴 ( 𝑝 ≠ 𝑞 ∧ 𝑋 = ( 𝑝 ( join ‘ 𝐾 ) 𝑞 ) ) ) ) |
| 27 | 14 26 | bitrd | ⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑝 ∈ 𝐴 ) → ( 𝑝 𝐶 𝑋 ↔ ∃ 𝑞 ∈ 𝐴 ( 𝑝 ≠ 𝑞 ∧ 𝑋 = ( 𝑝 ( join ‘ 𝐾 ) 𝑞 ) ) ) ) |
| 28 | 27 | rexbidva | ⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ) → ( ∃ 𝑝 ∈ 𝐴 𝑝 𝐶 𝑋 ↔ ∃ 𝑝 ∈ 𝐴 ∃ 𝑞 ∈ 𝐴 ( 𝑝 ≠ 𝑞 ∧ 𝑋 = ( 𝑝 ( join ‘ 𝐾 ) 𝑞 ) ) ) ) |
| 29 | 7 28 | bitr4d | ⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ) → ( ( 𝑀 ‘ 𝑋 ) ∈ 𝑁 ↔ ∃ 𝑝 ∈ 𝐴 𝑝 𝐶 𝑋 ) ) |