This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Definition of line in terms of projective map. (Contributed by NM, 25-Jan-2012)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isline2.j | |- .\/ = ( join ` K ) |
|
| isline2.a | |- A = ( Atoms ` K ) |
||
| isline2.n | |- N = ( Lines ` K ) |
||
| isline2.m | |- M = ( pmap ` K ) |
||
| Assertion | isline2 | |- ( K e. Lat -> ( X e. N <-> E. p e. A E. q e. A ( p =/= q /\ X = ( M ` ( p .\/ q ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isline2.j | |- .\/ = ( join ` K ) |
|
| 2 | isline2.a | |- A = ( Atoms ` K ) |
|
| 3 | isline2.n | |- N = ( Lines ` K ) |
|
| 4 | isline2.m | |- M = ( pmap ` K ) |
|
| 5 | eqid | |- ( le ` K ) = ( le ` K ) |
|
| 6 | 5 1 2 3 | isline | |- ( K e. Lat -> ( X e. N <-> E. p e. A E. q e. A ( p =/= q /\ X = { r e. A | r ( le ` K ) ( p .\/ q ) } ) ) ) |
| 7 | simpl | |- ( ( K e. Lat /\ ( p e. A /\ q e. A ) ) -> K e. Lat ) |
|
| 8 | eqid | |- ( Base ` K ) = ( Base ` K ) |
|
| 9 | 8 2 | atbase | |- ( p e. A -> p e. ( Base ` K ) ) |
| 10 | 9 | ad2antrl | |- ( ( K e. Lat /\ ( p e. A /\ q e. A ) ) -> p e. ( Base ` K ) ) |
| 11 | 8 2 | atbase | |- ( q e. A -> q e. ( Base ` K ) ) |
| 12 | 11 | ad2antll | |- ( ( K e. Lat /\ ( p e. A /\ q e. A ) ) -> q e. ( Base ` K ) ) |
| 13 | 8 1 | latjcl | |- ( ( K e. Lat /\ p e. ( Base ` K ) /\ q e. ( Base ` K ) ) -> ( p .\/ q ) e. ( Base ` K ) ) |
| 14 | 7 10 12 13 | syl3anc | |- ( ( K e. Lat /\ ( p e. A /\ q e. A ) ) -> ( p .\/ q ) e. ( Base ` K ) ) |
| 15 | 8 5 2 4 | pmapval | |- ( ( K e. Lat /\ ( p .\/ q ) e. ( Base ` K ) ) -> ( M ` ( p .\/ q ) ) = { r e. A | r ( le ` K ) ( p .\/ q ) } ) |
| 16 | 14 15 | syldan | |- ( ( K e. Lat /\ ( p e. A /\ q e. A ) ) -> ( M ` ( p .\/ q ) ) = { r e. A | r ( le ` K ) ( p .\/ q ) } ) |
| 17 | 16 | eqeq2d | |- ( ( K e. Lat /\ ( p e. A /\ q e. A ) ) -> ( X = ( M ` ( p .\/ q ) ) <-> X = { r e. A | r ( le ` K ) ( p .\/ q ) } ) ) |
| 18 | 17 | anbi2d | |- ( ( K e. Lat /\ ( p e. A /\ q e. A ) ) -> ( ( p =/= q /\ X = ( M ` ( p .\/ q ) ) ) <-> ( p =/= q /\ X = { r e. A | r ( le ` K ) ( p .\/ q ) } ) ) ) |
| 19 | 18 | 2rexbidva | |- ( K e. Lat -> ( E. p e. A E. q e. A ( p =/= q /\ X = ( M ` ( p .\/ q ) ) ) <-> E. p e. A E. q e. A ( p =/= q /\ X = { r e. A | r ( le ` K ) ( p .\/ q ) } ) ) ) |
| 20 | 6 19 | bitr4d | |- ( K e. Lat -> ( X e. N <-> E. p e. A E. q e. A ( p =/= q /\ X = ( M ` ( p .\/ q ) ) ) ) ) |