This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The predicate "is a line". (Contributed by NM, 19-Sep-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isline.l | |- .<_ = ( le ` K ) |
|
| isline.j | |- .\/ = ( join ` K ) |
||
| isline.a | |- A = ( Atoms ` K ) |
||
| isline.n | |- N = ( Lines ` K ) |
||
| Assertion | isline | |- ( K e. D -> ( X e. N <-> E. q e. A E. r e. A ( q =/= r /\ X = { p e. A | p .<_ ( q .\/ r ) } ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isline.l | |- .<_ = ( le ` K ) |
|
| 2 | isline.j | |- .\/ = ( join ` K ) |
|
| 3 | isline.a | |- A = ( Atoms ` K ) |
|
| 4 | isline.n | |- N = ( Lines ` K ) |
|
| 5 | 1 2 3 4 | lineset | |- ( K e. D -> N = { x | E. q e. A E. r e. A ( q =/= r /\ x = { p e. A | p .<_ ( q .\/ r ) } ) } ) |
| 6 | 5 | eleq2d | |- ( K e. D -> ( X e. N <-> X e. { x | E. q e. A E. r e. A ( q =/= r /\ x = { p e. A | p .<_ ( q .\/ r ) } ) } ) ) |
| 7 | 3 | fvexi | |- A e. _V |
| 8 | 7 | rabex | |- { p e. A | p .<_ ( q .\/ r ) } e. _V |
| 9 | eleq1 | |- ( X = { p e. A | p .<_ ( q .\/ r ) } -> ( X e. _V <-> { p e. A | p .<_ ( q .\/ r ) } e. _V ) ) |
|
| 10 | 8 9 | mpbiri | |- ( X = { p e. A | p .<_ ( q .\/ r ) } -> X e. _V ) |
| 11 | 10 | adantl | |- ( ( q =/= r /\ X = { p e. A | p .<_ ( q .\/ r ) } ) -> X e. _V ) |
| 12 | 11 | a1i | |- ( ( q e. A /\ r e. A ) -> ( ( q =/= r /\ X = { p e. A | p .<_ ( q .\/ r ) } ) -> X e. _V ) ) |
| 13 | 12 | rexlimivv | |- ( E. q e. A E. r e. A ( q =/= r /\ X = { p e. A | p .<_ ( q .\/ r ) } ) -> X e. _V ) |
| 14 | eqeq1 | |- ( x = X -> ( x = { p e. A | p .<_ ( q .\/ r ) } <-> X = { p e. A | p .<_ ( q .\/ r ) } ) ) |
|
| 15 | 14 | anbi2d | |- ( x = X -> ( ( q =/= r /\ x = { p e. A | p .<_ ( q .\/ r ) } ) <-> ( q =/= r /\ X = { p e. A | p .<_ ( q .\/ r ) } ) ) ) |
| 16 | 15 | 2rexbidv | |- ( x = X -> ( E. q e. A E. r e. A ( q =/= r /\ x = { p e. A | p .<_ ( q .\/ r ) } ) <-> E. q e. A E. r e. A ( q =/= r /\ X = { p e. A | p .<_ ( q .\/ r ) } ) ) ) |
| 17 | 13 16 | elab3 | |- ( X e. { x | E. q e. A E. r e. A ( q =/= r /\ x = { p e. A | p .<_ ( q .\/ r ) } ) } <-> E. q e. A E. r e. A ( q =/= r /\ X = { p e. A | p .<_ ( q .\/ r ) } ) ) |
| 18 | 6 17 | bitrdi | |- ( K e. D -> ( X e. N <-> E. q e. A E. r e. A ( q =/= r /\ X = { p e. A | p .<_ ( q .\/ r ) } ) ) ) |