This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the class of integrable functions on the reals. A function is integrable if it is measurable and the integrals of the pieces of the function are all finite. (Contributed by Mario Carneiro, 28-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-ibl | ⊢ 𝐿1 = { 𝑓 ∈ MblFn ∣ ∀ 𝑘 ∈ ( 0 ... 3 ) ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ ⦋ ( ℜ ‘ ( ( 𝑓 ‘ 𝑥 ) / ( i ↑ 𝑘 ) ) ) / 𝑦 ⦌ if ( ( 𝑥 ∈ dom 𝑓 ∧ 0 ≤ 𝑦 ) , 𝑦 , 0 ) ) ) ∈ ℝ } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cibl | ⊢ 𝐿1 | |
| 1 | vf | ⊢ 𝑓 | |
| 2 | cmbf | ⊢ MblFn | |
| 3 | vk | ⊢ 𝑘 | |
| 4 | cc0 | ⊢ 0 | |
| 5 | cfz | ⊢ ... | |
| 6 | c3 | ⊢ 3 | |
| 7 | 4 6 5 | co | ⊢ ( 0 ... 3 ) |
| 8 | citg2 | ⊢ ∫2 | |
| 9 | vx | ⊢ 𝑥 | |
| 10 | cr | ⊢ ℝ | |
| 11 | cre | ⊢ ℜ | |
| 12 | 1 | cv | ⊢ 𝑓 |
| 13 | 9 | cv | ⊢ 𝑥 |
| 14 | 13 12 | cfv | ⊢ ( 𝑓 ‘ 𝑥 ) |
| 15 | cdiv | ⊢ / | |
| 16 | ci | ⊢ i | |
| 17 | cexp | ⊢ ↑ | |
| 18 | 3 | cv | ⊢ 𝑘 |
| 19 | 16 18 17 | co | ⊢ ( i ↑ 𝑘 ) |
| 20 | 14 19 15 | co | ⊢ ( ( 𝑓 ‘ 𝑥 ) / ( i ↑ 𝑘 ) ) |
| 21 | 20 11 | cfv | ⊢ ( ℜ ‘ ( ( 𝑓 ‘ 𝑥 ) / ( i ↑ 𝑘 ) ) ) |
| 22 | vy | ⊢ 𝑦 | |
| 23 | 12 | cdm | ⊢ dom 𝑓 |
| 24 | 13 23 | wcel | ⊢ 𝑥 ∈ dom 𝑓 |
| 25 | cle | ⊢ ≤ | |
| 26 | 22 | cv | ⊢ 𝑦 |
| 27 | 4 26 25 | wbr | ⊢ 0 ≤ 𝑦 |
| 28 | 24 27 | wa | ⊢ ( 𝑥 ∈ dom 𝑓 ∧ 0 ≤ 𝑦 ) |
| 29 | 28 26 4 | cif | ⊢ if ( ( 𝑥 ∈ dom 𝑓 ∧ 0 ≤ 𝑦 ) , 𝑦 , 0 ) |
| 30 | 22 21 29 | csb | ⊢ ⦋ ( ℜ ‘ ( ( 𝑓 ‘ 𝑥 ) / ( i ↑ 𝑘 ) ) ) / 𝑦 ⦌ if ( ( 𝑥 ∈ dom 𝑓 ∧ 0 ≤ 𝑦 ) , 𝑦 , 0 ) |
| 31 | 9 10 30 | cmpt | ⊢ ( 𝑥 ∈ ℝ ↦ ⦋ ( ℜ ‘ ( ( 𝑓 ‘ 𝑥 ) / ( i ↑ 𝑘 ) ) ) / 𝑦 ⦌ if ( ( 𝑥 ∈ dom 𝑓 ∧ 0 ≤ 𝑦 ) , 𝑦 , 0 ) ) |
| 32 | 31 8 | cfv | ⊢ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ ⦋ ( ℜ ‘ ( ( 𝑓 ‘ 𝑥 ) / ( i ↑ 𝑘 ) ) ) / 𝑦 ⦌ if ( ( 𝑥 ∈ dom 𝑓 ∧ 0 ≤ 𝑦 ) , 𝑦 , 0 ) ) ) |
| 33 | 32 10 | wcel | ⊢ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ ⦋ ( ℜ ‘ ( ( 𝑓 ‘ 𝑥 ) / ( i ↑ 𝑘 ) ) ) / 𝑦 ⦌ if ( ( 𝑥 ∈ dom 𝑓 ∧ 0 ≤ 𝑦 ) , 𝑦 , 0 ) ) ) ∈ ℝ |
| 34 | 33 3 7 | wral | ⊢ ∀ 𝑘 ∈ ( 0 ... 3 ) ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ ⦋ ( ℜ ‘ ( ( 𝑓 ‘ 𝑥 ) / ( i ↑ 𝑘 ) ) ) / 𝑦 ⦌ if ( ( 𝑥 ∈ dom 𝑓 ∧ 0 ≤ 𝑦 ) , 𝑦 , 0 ) ) ) ∈ ℝ |
| 35 | 34 1 2 | crab | ⊢ { 𝑓 ∈ MblFn ∣ ∀ 𝑘 ∈ ( 0 ... 3 ) ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ ⦋ ( ℜ ‘ ( ( 𝑓 ‘ 𝑥 ) / ( i ↑ 𝑘 ) ) ) / 𝑦 ⦌ if ( ( 𝑥 ∈ dom 𝑓 ∧ 0 ≤ 𝑦 ) , 𝑦 , 0 ) ) ) ∈ ℝ } |
| 36 | 0 35 | wceq | ⊢ 𝐿1 = { 𝑓 ∈ MblFn ∣ ∀ 𝑘 ∈ ( 0 ... 3 ) ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ ⦋ ( ℜ ‘ ( ( 𝑓 ‘ 𝑥 ) / ( i ↑ 𝑘 ) ) ) / 𝑦 ⦌ if ( ( 𝑥 ∈ dom 𝑓 ∧ 0 ≤ 𝑦 ) , 𝑦 , 0 ) ) ) ∈ ℝ } |