This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A cluster point of a filter. (Contributed by Mario Carneiro, 26-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | isfcls2 | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ) → ( 𝐴 ∈ ( 𝐽 fClus 𝐹 ) ↔ ∀ 𝑠 ∈ 𝐹 𝐴 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑠 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | topontop | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝐽 ∈ Top ) | |
| 2 | toponuni | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝑋 = ∪ 𝐽 ) | |
| 3 | 2 | fveq2d | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → ( Fil ‘ 𝑋 ) = ( Fil ‘ ∪ 𝐽 ) ) |
| 4 | 3 | eleq2d | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ↔ 𝐹 ∈ ( Fil ‘ ∪ 𝐽 ) ) ) |
| 5 | 4 | biimpa | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ) → 𝐹 ∈ ( Fil ‘ ∪ 𝐽 ) ) |
| 6 | eqid | ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 7 | 6 | isfcls | ⊢ ( 𝐴 ∈ ( 𝐽 fClus 𝐹 ) ↔ ( 𝐽 ∈ Top ∧ 𝐹 ∈ ( Fil ‘ ∪ 𝐽 ) ∧ ∀ 𝑠 ∈ 𝐹 𝐴 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑠 ) ) ) |
| 8 | df-3an | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐹 ∈ ( Fil ‘ ∪ 𝐽 ) ∧ ∀ 𝑠 ∈ 𝐹 𝐴 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑠 ) ) ↔ ( ( 𝐽 ∈ Top ∧ 𝐹 ∈ ( Fil ‘ ∪ 𝐽 ) ) ∧ ∀ 𝑠 ∈ 𝐹 𝐴 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑠 ) ) ) | |
| 9 | 7 8 | bitri | ⊢ ( 𝐴 ∈ ( 𝐽 fClus 𝐹 ) ↔ ( ( 𝐽 ∈ Top ∧ 𝐹 ∈ ( Fil ‘ ∪ 𝐽 ) ) ∧ ∀ 𝑠 ∈ 𝐹 𝐴 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑠 ) ) ) |
| 10 | 9 | baib | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐹 ∈ ( Fil ‘ ∪ 𝐽 ) ) → ( 𝐴 ∈ ( 𝐽 fClus 𝐹 ) ↔ ∀ 𝑠 ∈ 𝐹 𝐴 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑠 ) ) ) |
| 11 | 1 5 10 | syl2an2r | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ) → ( 𝐴 ∈ ( 𝐽 fClus 𝐹 ) ↔ ∀ 𝑠 ∈ 𝐹 𝐴 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑠 ) ) ) |