This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for isfin3-2 . Different K values are disjoint. (Contributed by Stefan O'Rear, 5-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isf32lem.a | ⊢ ( 𝜑 → 𝐹 : ω ⟶ 𝒫 𝐺 ) | |
| isf32lem.b | ⊢ ( 𝜑 → ∀ 𝑥 ∈ ω ( 𝐹 ‘ suc 𝑥 ) ⊆ ( 𝐹 ‘ 𝑥 ) ) | ||
| isf32lem.c | ⊢ ( 𝜑 → ¬ ∩ ran 𝐹 ∈ ran 𝐹 ) | ||
| isf32lem.d | ⊢ 𝑆 = { 𝑦 ∈ ω ∣ ( 𝐹 ‘ suc 𝑦 ) ⊊ ( 𝐹 ‘ 𝑦 ) } | ||
| isf32lem.e | ⊢ 𝐽 = ( 𝑢 ∈ ω ↦ ( ℩ 𝑣 ∈ 𝑆 ( 𝑣 ∩ 𝑆 ) ≈ 𝑢 ) ) | ||
| isf32lem.f | ⊢ 𝐾 = ( ( 𝑤 ∈ 𝑆 ↦ ( ( 𝐹 ‘ 𝑤 ) ∖ ( 𝐹 ‘ suc 𝑤 ) ) ) ∘ 𝐽 ) | ||
| Assertion | isf32lem7 | ⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ) → ( ( 𝐾 ‘ 𝐴 ) ∩ ( 𝐾 ‘ 𝐵 ) ) = ∅ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isf32lem.a | ⊢ ( 𝜑 → 𝐹 : ω ⟶ 𝒫 𝐺 ) | |
| 2 | isf32lem.b | ⊢ ( 𝜑 → ∀ 𝑥 ∈ ω ( 𝐹 ‘ suc 𝑥 ) ⊆ ( 𝐹 ‘ 𝑥 ) ) | |
| 3 | isf32lem.c | ⊢ ( 𝜑 → ¬ ∩ ran 𝐹 ∈ ran 𝐹 ) | |
| 4 | isf32lem.d | ⊢ 𝑆 = { 𝑦 ∈ ω ∣ ( 𝐹 ‘ suc 𝑦 ) ⊊ ( 𝐹 ‘ 𝑦 ) } | |
| 5 | isf32lem.e | ⊢ 𝐽 = ( 𝑢 ∈ ω ↦ ( ℩ 𝑣 ∈ 𝑆 ( 𝑣 ∩ 𝑆 ) ≈ 𝑢 ) ) | |
| 6 | isf32lem.f | ⊢ 𝐾 = ( ( 𝑤 ∈ 𝑆 ↦ ( ( 𝐹 ‘ 𝑤 ) ∖ ( 𝐹 ‘ suc 𝑤 ) ) ) ∘ 𝐽 ) | |
| 7 | 6 | fveq1i | ⊢ ( 𝐾 ‘ 𝐴 ) = ( ( ( 𝑤 ∈ 𝑆 ↦ ( ( 𝐹 ‘ 𝑤 ) ∖ ( 𝐹 ‘ suc 𝑤 ) ) ) ∘ 𝐽 ) ‘ 𝐴 ) |
| 8 | 4 | ssrab3 | ⊢ 𝑆 ⊆ ω |
| 9 | 1 2 3 4 | isf32lem5 | ⊢ ( 𝜑 → ¬ 𝑆 ∈ Fin ) |
| 10 | 5 | fin23lem22 | ⊢ ( ( 𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin ) → 𝐽 : ω –1-1-onto→ 𝑆 ) |
| 11 | 8 9 10 | sylancr | ⊢ ( 𝜑 → 𝐽 : ω –1-1-onto→ 𝑆 ) |
| 12 | f1of | ⊢ ( 𝐽 : ω –1-1-onto→ 𝑆 → 𝐽 : ω ⟶ 𝑆 ) | |
| 13 | 11 12 | syl | ⊢ ( 𝜑 → 𝐽 : ω ⟶ 𝑆 ) |
| 14 | fvco3 | ⊢ ( ( 𝐽 : ω ⟶ 𝑆 ∧ 𝐴 ∈ ω ) → ( ( ( 𝑤 ∈ 𝑆 ↦ ( ( 𝐹 ‘ 𝑤 ) ∖ ( 𝐹 ‘ suc 𝑤 ) ) ) ∘ 𝐽 ) ‘ 𝐴 ) = ( ( 𝑤 ∈ 𝑆 ↦ ( ( 𝐹 ‘ 𝑤 ) ∖ ( 𝐹 ‘ suc 𝑤 ) ) ) ‘ ( 𝐽 ‘ 𝐴 ) ) ) | |
| 15 | 13 14 | sylan | ⊢ ( ( 𝜑 ∧ 𝐴 ∈ ω ) → ( ( ( 𝑤 ∈ 𝑆 ↦ ( ( 𝐹 ‘ 𝑤 ) ∖ ( 𝐹 ‘ suc 𝑤 ) ) ) ∘ 𝐽 ) ‘ 𝐴 ) = ( ( 𝑤 ∈ 𝑆 ↦ ( ( 𝐹 ‘ 𝑤 ) ∖ ( 𝐹 ‘ suc 𝑤 ) ) ) ‘ ( 𝐽 ‘ 𝐴 ) ) ) |
| 16 | 15 | ad2ant2r | ⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ) → ( ( ( 𝑤 ∈ 𝑆 ↦ ( ( 𝐹 ‘ 𝑤 ) ∖ ( 𝐹 ‘ suc 𝑤 ) ) ) ∘ 𝐽 ) ‘ 𝐴 ) = ( ( 𝑤 ∈ 𝑆 ↦ ( ( 𝐹 ‘ 𝑤 ) ∖ ( 𝐹 ‘ suc 𝑤 ) ) ) ‘ ( 𝐽 ‘ 𝐴 ) ) ) |
| 17 | 13 | adantr | ⊢ ( ( 𝜑 ∧ 𝐴 ≠ 𝐵 ) → 𝐽 : ω ⟶ 𝑆 ) |
| 18 | simpl | ⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → 𝐴 ∈ ω ) | |
| 19 | ffvelcdm | ⊢ ( ( 𝐽 : ω ⟶ 𝑆 ∧ 𝐴 ∈ ω ) → ( 𝐽 ‘ 𝐴 ) ∈ 𝑆 ) | |
| 20 | 17 18 19 | syl2an | ⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ) → ( 𝐽 ‘ 𝐴 ) ∈ 𝑆 ) |
| 21 | fveq2 | ⊢ ( 𝑤 = ( 𝐽 ‘ 𝐴 ) → ( 𝐹 ‘ 𝑤 ) = ( 𝐹 ‘ ( 𝐽 ‘ 𝐴 ) ) ) | |
| 22 | suceq | ⊢ ( 𝑤 = ( 𝐽 ‘ 𝐴 ) → suc 𝑤 = suc ( 𝐽 ‘ 𝐴 ) ) | |
| 23 | 22 | fveq2d | ⊢ ( 𝑤 = ( 𝐽 ‘ 𝐴 ) → ( 𝐹 ‘ suc 𝑤 ) = ( 𝐹 ‘ suc ( 𝐽 ‘ 𝐴 ) ) ) |
| 24 | 21 23 | difeq12d | ⊢ ( 𝑤 = ( 𝐽 ‘ 𝐴 ) → ( ( 𝐹 ‘ 𝑤 ) ∖ ( 𝐹 ‘ suc 𝑤 ) ) = ( ( 𝐹 ‘ ( 𝐽 ‘ 𝐴 ) ) ∖ ( 𝐹 ‘ suc ( 𝐽 ‘ 𝐴 ) ) ) ) |
| 25 | eqid | ⊢ ( 𝑤 ∈ 𝑆 ↦ ( ( 𝐹 ‘ 𝑤 ) ∖ ( 𝐹 ‘ suc 𝑤 ) ) ) = ( 𝑤 ∈ 𝑆 ↦ ( ( 𝐹 ‘ 𝑤 ) ∖ ( 𝐹 ‘ suc 𝑤 ) ) ) | |
| 26 | fvex | ⊢ ( 𝐹 ‘ ( 𝐽 ‘ 𝐴 ) ) ∈ V | |
| 27 | 26 | difexi | ⊢ ( ( 𝐹 ‘ ( 𝐽 ‘ 𝐴 ) ) ∖ ( 𝐹 ‘ suc ( 𝐽 ‘ 𝐴 ) ) ) ∈ V |
| 28 | 24 25 27 | fvmpt | ⊢ ( ( 𝐽 ‘ 𝐴 ) ∈ 𝑆 → ( ( 𝑤 ∈ 𝑆 ↦ ( ( 𝐹 ‘ 𝑤 ) ∖ ( 𝐹 ‘ suc 𝑤 ) ) ) ‘ ( 𝐽 ‘ 𝐴 ) ) = ( ( 𝐹 ‘ ( 𝐽 ‘ 𝐴 ) ) ∖ ( 𝐹 ‘ suc ( 𝐽 ‘ 𝐴 ) ) ) ) |
| 29 | 20 28 | syl | ⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ) → ( ( 𝑤 ∈ 𝑆 ↦ ( ( 𝐹 ‘ 𝑤 ) ∖ ( 𝐹 ‘ suc 𝑤 ) ) ) ‘ ( 𝐽 ‘ 𝐴 ) ) = ( ( 𝐹 ‘ ( 𝐽 ‘ 𝐴 ) ) ∖ ( 𝐹 ‘ suc ( 𝐽 ‘ 𝐴 ) ) ) ) |
| 30 | 16 29 | eqtrd | ⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ) → ( ( ( 𝑤 ∈ 𝑆 ↦ ( ( 𝐹 ‘ 𝑤 ) ∖ ( 𝐹 ‘ suc 𝑤 ) ) ) ∘ 𝐽 ) ‘ 𝐴 ) = ( ( 𝐹 ‘ ( 𝐽 ‘ 𝐴 ) ) ∖ ( 𝐹 ‘ suc ( 𝐽 ‘ 𝐴 ) ) ) ) |
| 31 | 7 30 | eqtrid | ⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ) → ( 𝐾 ‘ 𝐴 ) = ( ( 𝐹 ‘ ( 𝐽 ‘ 𝐴 ) ) ∖ ( 𝐹 ‘ suc ( 𝐽 ‘ 𝐴 ) ) ) ) |
| 32 | 6 | fveq1i | ⊢ ( 𝐾 ‘ 𝐵 ) = ( ( ( 𝑤 ∈ 𝑆 ↦ ( ( 𝐹 ‘ 𝑤 ) ∖ ( 𝐹 ‘ suc 𝑤 ) ) ) ∘ 𝐽 ) ‘ 𝐵 ) |
| 33 | fvco3 | ⊢ ( ( 𝐽 : ω ⟶ 𝑆 ∧ 𝐵 ∈ ω ) → ( ( ( 𝑤 ∈ 𝑆 ↦ ( ( 𝐹 ‘ 𝑤 ) ∖ ( 𝐹 ‘ suc 𝑤 ) ) ) ∘ 𝐽 ) ‘ 𝐵 ) = ( ( 𝑤 ∈ 𝑆 ↦ ( ( 𝐹 ‘ 𝑤 ) ∖ ( 𝐹 ‘ suc 𝑤 ) ) ) ‘ ( 𝐽 ‘ 𝐵 ) ) ) | |
| 34 | 13 33 | sylan | ⊢ ( ( 𝜑 ∧ 𝐵 ∈ ω ) → ( ( ( 𝑤 ∈ 𝑆 ↦ ( ( 𝐹 ‘ 𝑤 ) ∖ ( 𝐹 ‘ suc 𝑤 ) ) ) ∘ 𝐽 ) ‘ 𝐵 ) = ( ( 𝑤 ∈ 𝑆 ↦ ( ( 𝐹 ‘ 𝑤 ) ∖ ( 𝐹 ‘ suc 𝑤 ) ) ) ‘ ( 𝐽 ‘ 𝐵 ) ) ) |
| 35 | 34 | ad2ant2rl | ⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ) → ( ( ( 𝑤 ∈ 𝑆 ↦ ( ( 𝐹 ‘ 𝑤 ) ∖ ( 𝐹 ‘ suc 𝑤 ) ) ) ∘ 𝐽 ) ‘ 𝐵 ) = ( ( 𝑤 ∈ 𝑆 ↦ ( ( 𝐹 ‘ 𝑤 ) ∖ ( 𝐹 ‘ suc 𝑤 ) ) ) ‘ ( 𝐽 ‘ 𝐵 ) ) ) |
| 36 | simpr | ⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → 𝐵 ∈ ω ) | |
| 37 | ffvelcdm | ⊢ ( ( 𝐽 : ω ⟶ 𝑆 ∧ 𝐵 ∈ ω ) → ( 𝐽 ‘ 𝐵 ) ∈ 𝑆 ) | |
| 38 | 17 36 37 | syl2an | ⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ) → ( 𝐽 ‘ 𝐵 ) ∈ 𝑆 ) |
| 39 | fveq2 | ⊢ ( 𝑤 = ( 𝐽 ‘ 𝐵 ) → ( 𝐹 ‘ 𝑤 ) = ( 𝐹 ‘ ( 𝐽 ‘ 𝐵 ) ) ) | |
| 40 | suceq | ⊢ ( 𝑤 = ( 𝐽 ‘ 𝐵 ) → suc 𝑤 = suc ( 𝐽 ‘ 𝐵 ) ) | |
| 41 | 40 | fveq2d | ⊢ ( 𝑤 = ( 𝐽 ‘ 𝐵 ) → ( 𝐹 ‘ suc 𝑤 ) = ( 𝐹 ‘ suc ( 𝐽 ‘ 𝐵 ) ) ) |
| 42 | 39 41 | difeq12d | ⊢ ( 𝑤 = ( 𝐽 ‘ 𝐵 ) → ( ( 𝐹 ‘ 𝑤 ) ∖ ( 𝐹 ‘ suc 𝑤 ) ) = ( ( 𝐹 ‘ ( 𝐽 ‘ 𝐵 ) ) ∖ ( 𝐹 ‘ suc ( 𝐽 ‘ 𝐵 ) ) ) ) |
| 43 | fvex | ⊢ ( 𝐹 ‘ ( 𝐽 ‘ 𝐵 ) ) ∈ V | |
| 44 | 43 | difexi | ⊢ ( ( 𝐹 ‘ ( 𝐽 ‘ 𝐵 ) ) ∖ ( 𝐹 ‘ suc ( 𝐽 ‘ 𝐵 ) ) ) ∈ V |
| 45 | 42 25 44 | fvmpt | ⊢ ( ( 𝐽 ‘ 𝐵 ) ∈ 𝑆 → ( ( 𝑤 ∈ 𝑆 ↦ ( ( 𝐹 ‘ 𝑤 ) ∖ ( 𝐹 ‘ suc 𝑤 ) ) ) ‘ ( 𝐽 ‘ 𝐵 ) ) = ( ( 𝐹 ‘ ( 𝐽 ‘ 𝐵 ) ) ∖ ( 𝐹 ‘ suc ( 𝐽 ‘ 𝐵 ) ) ) ) |
| 46 | 38 45 | syl | ⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ) → ( ( 𝑤 ∈ 𝑆 ↦ ( ( 𝐹 ‘ 𝑤 ) ∖ ( 𝐹 ‘ suc 𝑤 ) ) ) ‘ ( 𝐽 ‘ 𝐵 ) ) = ( ( 𝐹 ‘ ( 𝐽 ‘ 𝐵 ) ) ∖ ( 𝐹 ‘ suc ( 𝐽 ‘ 𝐵 ) ) ) ) |
| 47 | 35 46 | eqtrd | ⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ) → ( ( ( 𝑤 ∈ 𝑆 ↦ ( ( 𝐹 ‘ 𝑤 ) ∖ ( 𝐹 ‘ suc 𝑤 ) ) ) ∘ 𝐽 ) ‘ 𝐵 ) = ( ( 𝐹 ‘ ( 𝐽 ‘ 𝐵 ) ) ∖ ( 𝐹 ‘ suc ( 𝐽 ‘ 𝐵 ) ) ) ) |
| 48 | 32 47 | eqtrid | ⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ) → ( 𝐾 ‘ 𝐵 ) = ( ( 𝐹 ‘ ( 𝐽 ‘ 𝐵 ) ) ∖ ( 𝐹 ‘ suc ( 𝐽 ‘ 𝐵 ) ) ) ) |
| 49 | 31 48 | ineq12d | ⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ) → ( ( 𝐾 ‘ 𝐴 ) ∩ ( 𝐾 ‘ 𝐵 ) ) = ( ( ( 𝐹 ‘ ( 𝐽 ‘ 𝐴 ) ) ∖ ( 𝐹 ‘ suc ( 𝐽 ‘ 𝐴 ) ) ) ∩ ( ( 𝐹 ‘ ( 𝐽 ‘ 𝐵 ) ) ∖ ( 𝐹 ‘ suc ( 𝐽 ‘ 𝐵 ) ) ) ) ) |
| 50 | simpll | ⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ) → 𝜑 ) | |
| 51 | simplr | ⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ) → 𝐴 ≠ 𝐵 ) | |
| 52 | f1of1 | ⊢ ( 𝐽 : ω –1-1-onto→ 𝑆 → 𝐽 : ω –1-1→ 𝑆 ) | |
| 53 | 11 52 | syl | ⊢ ( 𝜑 → 𝐽 : ω –1-1→ 𝑆 ) |
| 54 | 53 | adantr | ⊢ ( ( 𝜑 ∧ 𝐴 ≠ 𝐵 ) → 𝐽 : ω –1-1→ 𝑆 ) |
| 55 | f1fveq | ⊢ ( ( 𝐽 : ω –1-1→ 𝑆 ∧ ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ) → ( ( 𝐽 ‘ 𝐴 ) = ( 𝐽 ‘ 𝐵 ) ↔ 𝐴 = 𝐵 ) ) | |
| 56 | 54 55 | sylan | ⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ) → ( ( 𝐽 ‘ 𝐴 ) = ( 𝐽 ‘ 𝐵 ) ↔ 𝐴 = 𝐵 ) ) |
| 57 | 56 | biimpd | ⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ) → ( ( 𝐽 ‘ 𝐴 ) = ( 𝐽 ‘ 𝐵 ) → 𝐴 = 𝐵 ) ) |
| 58 | 57 | necon3d | ⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ) → ( 𝐴 ≠ 𝐵 → ( 𝐽 ‘ 𝐴 ) ≠ ( 𝐽 ‘ 𝐵 ) ) ) |
| 59 | 51 58 | mpd | ⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ) → ( 𝐽 ‘ 𝐴 ) ≠ ( 𝐽 ‘ 𝐵 ) ) |
| 60 | 8 20 | sselid | ⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ) → ( 𝐽 ‘ 𝐴 ) ∈ ω ) |
| 61 | 8 38 | sselid | ⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ) → ( 𝐽 ‘ 𝐵 ) ∈ ω ) |
| 62 | 1 2 3 | isf32lem4 | ⊢ ( ( ( 𝜑 ∧ ( 𝐽 ‘ 𝐴 ) ≠ ( 𝐽 ‘ 𝐵 ) ) ∧ ( ( 𝐽 ‘ 𝐴 ) ∈ ω ∧ ( 𝐽 ‘ 𝐵 ) ∈ ω ) ) → ( ( ( 𝐹 ‘ ( 𝐽 ‘ 𝐴 ) ) ∖ ( 𝐹 ‘ suc ( 𝐽 ‘ 𝐴 ) ) ) ∩ ( ( 𝐹 ‘ ( 𝐽 ‘ 𝐵 ) ) ∖ ( 𝐹 ‘ suc ( 𝐽 ‘ 𝐵 ) ) ) ) = ∅ ) |
| 63 | 50 59 60 61 62 | syl22anc | ⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ) → ( ( ( 𝐹 ‘ ( 𝐽 ‘ 𝐴 ) ) ∖ ( 𝐹 ‘ suc ( 𝐽 ‘ 𝐴 ) ) ) ∩ ( ( 𝐹 ‘ ( 𝐽 ‘ 𝐵 ) ) ∖ ( 𝐹 ‘ suc ( 𝐽 ‘ 𝐵 ) ) ) ) = ∅ ) |
| 64 | 49 63 | eqtrd | ⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ) → ( ( 𝐾 ‘ 𝐴 ) ∩ ( 𝐾 ‘ 𝐵 ) ) = ∅ ) |