This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for isfin3-2 . Being a chain, difference sets are disjoint. (Contributed by Stefan O'Rear, 5-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isf32lem.a | ⊢ ( 𝜑 → 𝐹 : ω ⟶ 𝒫 𝐺 ) | |
| isf32lem.b | ⊢ ( 𝜑 → ∀ 𝑥 ∈ ω ( 𝐹 ‘ suc 𝑥 ) ⊆ ( 𝐹 ‘ 𝑥 ) ) | ||
| isf32lem.c | ⊢ ( 𝜑 → ¬ ∩ ran 𝐹 ∈ ran 𝐹 ) | ||
| Assertion | isf32lem4 | ⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ) → ( ( ( 𝐹 ‘ 𝐴 ) ∖ ( 𝐹 ‘ suc 𝐴 ) ) ∩ ( ( 𝐹 ‘ 𝐵 ) ∖ ( 𝐹 ‘ suc 𝐵 ) ) ) = ∅ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isf32lem.a | ⊢ ( 𝜑 → 𝐹 : ω ⟶ 𝒫 𝐺 ) | |
| 2 | isf32lem.b | ⊢ ( 𝜑 → ∀ 𝑥 ∈ ω ( 𝐹 ‘ suc 𝑥 ) ⊆ ( 𝐹 ‘ 𝑥 ) ) | |
| 3 | isf32lem.c | ⊢ ( 𝜑 → ¬ ∩ ran 𝐹 ∈ ran 𝐹 ) | |
| 4 | simplrr | ⊢ ( ( ( ( 𝜑 ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ) ∧ 𝐴 ∈ 𝐵 ) → 𝐵 ∈ ω ) | |
| 5 | simplrl | ⊢ ( ( ( ( 𝜑 ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ) ∧ 𝐴 ∈ 𝐵 ) → 𝐴 ∈ ω ) | |
| 6 | simpr | ⊢ ( ( ( ( 𝜑 ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ) ∧ 𝐴 ∈ 𝐵 ) → 𝐴 ∈ 𝐵 ) | |
| 7 | simplll | ⊢ ( ( ( ( 𝜑 ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ) ∧ 𝐴 ∈ 𝐵 ) → 𝜑 ) | |
| 8 | incom | ⊢ ( ( ( 𝐹 ‘ 𝐴 ) ∖ ( 𝐹 ‘ suc 𝐴 ) ) ∩ ( ( 𝐹 ‘ 𝐵 ) ∖ ( 𝐹 ‘ suc 𝐵 ) ) ) = ( ( ( 𝐹 ‘ 𝐵 ) ∖ ( 𝐹 ‘ suc 𝐵 ) ) ∩ ( ( 𝐹 ‘ 𝐴 ) ∖ ( 𝐹 ‘ suc 𝐴 ) ) ) | |
| 9 | 1 2 3 | isf32lem3 | ⊢ ( ( ( 𝐵 ∈ ω ∧ 𝐴 ∈ ω ) ∧ ( 𝐴 ∈ 𝐵 ∧ 𝜑 ) ) → ( ( ( 𝐹 ‘ 𝐵 ) ∖ ( 𝐹 ‘ suc 𝐵 ) ) ∩ ( ( 𝐹 ‘ 𝐴 ) ∖ ( 𝐹 ‘ suc 𝐴 ) ) ) = ∅ ) |
| 10 | 8 9 | eqtrid | ⊢ ( ( ( 𝐵 ∈ ω ∧ 𝐴 ∈ ω ) ∧ ( 𝐴 ∈ 𝐵 ∧ 𝜑 ) ) → ( ( ( 𝐹 ‘ 𝐴 ) ∖ ( 𝐹 ‘ suc 𝐴 ) ) ∩ ( ( 𝐹 ‘ 𝐵 ) ∖ ( 𝐹 ‘ suc 𝐵 ) ) ) = ∅ ) |
| 11 | 4 5 6 7 10 | syl22anc | ⊢ ( ( ( ( 𝜑 ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ) ∧ 𝐴 ∈ 𝐵 ) → ( ( ( 𝐹 ‘ 𝐴 ) ∖ ( 𝐹 ‘ suc 𝐴 ) ) ∩ ( ( 𝐹 ‘ 𝐵 ) ∖ ( 𝐹 ‘ suc 𝐵 ) ) ) = ∅ ) |
| 12 | simplrl | ⊢ ( ( ( ( 𝜑 ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ) ∧ 𝐵 ∈ 𝐴 ) → 𝐴 ∈ ω ) | |
| 13 | simplrr | ⊢ ( ( ( ( 𝜑 ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ) ∧ 𝐵 ∈ 𝐴 ) → 𝐵 ∈ ω ) | |
| 14 | simpr | ⊢ ( ( ( ( 𝜑 ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ) ∧ 𝐵 ∈ 𝐴 ) → 𝐵 ∈ 𝐴 ) | |
| 15 | simplll | ⊢ ( ( ( ( 𝜑 ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ) ∧ 𝐵 ∈ 𝐴 ) → 𝜑 ) | |
| 16 | 1 2 3 | isf32lem3 | ⊢ ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ∧ ( 𝐵 ∈ 𝐴 ∧ 𝜑 ) ) → ( ( ( 𝐹 ‘ 𝐴 ) ∖ ( 𝐹 ‘ suc 𝐴 ) ) ∩ ( ( 𝐹 ‘ 𝐵 ) ∖ ( 𝐹 ‘ suc 𝐵 ) ) ) = ∅ ) |
| 17 | 12 13 14 15 16 | syl22anc | ⊢ ( ( ( ( 𝜑 ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ) ∧ 𝐵 ∈ 𝐴 ) → ( ( ( 𝐹 ‘ 𝐴 ) ∖ ( 𝐹 ‘ suc 𝐴 ) ) ∩ ( ( 𝐹 ‘ 𝐵 ) ∖ ( 𝐹 ‘ suc 𝐵 ) ) ) = ∅ ) |
| 18 | simplr | ⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ) → 𝐴 ≠ 𝐵 ) | |
| 19 | nnord | ⊢ ( 𝐴 ∈ ω → Ord 𝐴 ) | |
| 20 | nnord | ⊢ ( 𝐵 ∈ ω → Ord 𝐵 ) | |
| 21 | ordtri3 | ⊢ ( ( Ord 𝐴 ∧ Ord 𝐵 ) → ( 𝐴 = 𝐵 ↔ ¬ ( 𝐴 ∈ 𝐵 ∨ 𝐵 ∈ 𝐴 ) ) ) | |
| 22 | 19 20 21 | syl2an | ⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → ( 𝐴 = 𝐵 ↔ ¬ ( 𝐴 ∈ 𝐵 ∨ 𝐵 ∈ 𝐴 ) ) ) |
| 23 | 22 | adantl | ⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ) → ( 𝐴 = 𝐵 ↔ ¬ ( 𝐴 ∈ 𝐵 ∨ 𝐵 ∈ 𝐴 ) ) ) |
| 24 | 23 | necon2abid | ⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ) → ( ( 𝐴 ∈ 𝐵 ∨ 𝐵 ∈ 𝐴 ) ↔ 𝐴 ≠ 𝐵 ) ) |
| 25 | 18 24 | mpbird | ⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ) → ( 𝐴 ∈ 𝐵 ∨ 𝐵 ∈ 𝐴 ) ) |
| 26 | 11 17 25 | mpjaodan | ⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ) → ( ( ( 𝐹 ‘ 𝐴 ) ∖ ( 𝐹 ‘ suc 𝐴 ) ) ∩ ( ( 𝐹 ‘ 𝐵 ) ∖ ( 𝐹 ‘ suc 𝐵 ) ) ) = ∅ ) |