This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for isfin3-2 . There are infinite decrease points. (Contributed by Stefan O'Rear, 5-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isf32lem.a | ⊢ ( 𝜑 → 𝐹 : ω ⟶ 𝒫 𝐺 ) | |
| isf32lem.b | ⊢ ( 𝜑 → ∀ 𝑥 ∈ ω ( 𝐹 ‘ suc 𝑥 ) ⊆ ( 𝐹 ‘ 𝑥 ) ) | ||
| isf32lem.c | ⊢ ( 𝜑 → ¬ ∩ ran 𝐹 ∈ ran 𝐹 ) | ||
| isf32lem.d | ⊢ 𝑆 = { 𝑦 ∈ ω ∣ ( 𝐹 ‘ suc 𝑦 ) ⊊ ( 𝐹 ‘ 𝑦 ) } | ||
| Assertion | isf32lem5 | ⊢ ( 𝜑 → ¬ 𝑆 ∈ Fin ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isf32lem.a | ⊢ ( 𝜑 → 𝐹 : ω ⟶ 𝒫 𝐺 ) | |
| 2 | isf32lem.b | ⊢ ( 𝜑 → ∀ 𝑥 ∈ ω ( 𝐹 ‘ suc 𝑥 ) ⊆ ( 𝐹 ‘ 𝑥 ) ) | |
| 3 | isf32lem.c | ⊢ ( 𝜑 → ¬ ∩ ran 𝐹 ∈ ran 𝐹 ) | |
| 4 | isf32lem.d | ⊢ 𝑆 = { 𝑦 ∈ ω ∣ ( 𝐹 ‘ suc 𝑦 ) ⊊ ( 𝐹 ‘ 𝑦 ) } | |
| 5 | 1 2 3 | isf32lem2 | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ ω ) → ∃ 𝑏 ∈ ω ( 𝑎 ∈ 𝑏 ∧ ( 𝐹 ‘ suc 𝑏 ) ⊊ ( 𝐹 ‘ 𝑏 ) ) ) |
| 6 | 5 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑎 ∈ ω ∃ 𝑏 ∈ ω ( 𝑎 ∈ 𝑏 ∧ ( 𝐹 ‘ suc 𝑏 ) ⊊ ( 𝐹 ‘ 𝑏 ) ) ) |
| 7 | 4 | ssrab3 | ⊢ 𝑆 ⊆ ω |
| 8 | nnunifi | ⊢ ( ( 𝑆 ⊆ ω ∧ 𝑆 ∈ Fin ) → ∪ 𝑆 ∈ ω ) | |
| 9 | 7 8 | mpan | ⊢ ( 𝑆 ∈ Fin → ∪ 𝑆 ∈ ω ) |
| 10 | 9 | adantl | ⊢ ( ( 𝜑 ∧ 𝑆 ∈ Fin ) → ∪ 𝑆 ∈ ω ) |
| 11 | elssuni | ⊢ ( 𝑏 ∈ 𝑆 → 𝑏 ⊆ ∪ 𝑆 ) | |
| 12 | nnon | ⊢ ( 𝑏 ∈ ω → 𝑏 ∈ On ) | |
| 13 | omsson | ⊢ ω ⊆ On | |
| 14 | 13 10 | sselid | ⊢ ( ( 𝜑 ∧ 𝑆 ∈ Fin ) → ∪ 𝑆 ∈ On ) |
| 15 | ontri1 | ⊢ ( ( 𝑏 ∈ On ∧ ∪ 𝑆 ∈ On ) → ( 𝑏 ⊆ ∪ 𝑆 ↔ ¬ ∪ 𝑆 ∈ 𝑏 ) ) | |
| 16 | 12 14 15 | syl2anr | ⊢ ( ( ( 𝜑 ∧ 𝑆 ∈ Fin ) ∧ 𝑏 ∈ ω ) → ( 𝑏 ⊆ ∪ 𝑆 ↔ ¬ ∪ 𝑆 ∈ 𝑏 ) ) |
| 17 | 11 16 | imbitrid | ⊢ ( ( ( 𝜑 ∧ 𝑆 ∈ Fin ) ∧ 𝑏 ∈ ω ) → ( 𝑏 ∈ 𝑆 → ¬ ∪ 𝑆 ∈ 𝑏 ) ) |
| 18 | 17 | con2d | ⊢ ( ( ( 𝜑 ∧ 𝑆 ∈ Fin ) ∧ 𝑏 ∈ ω ) → ( ∪ 𝑆 ∈ 𝑏 → ¬ 𝑏 ∈ 𝑆 ) ) |
| 19 | 18 | impr | ⊢ ( ( ( 𝜑 ∧ 𝑆 ∈ Fin ) ∧ ( 𝑏 ∈ ω ∧ ∪ 𝑆 ∈ 𝑏 ) ) → ¬ 𝑏 ∈ 𝑆 ) |
| 20 | 4 | eleq2i | ⊢ ( 𝑏 ∈ 𝑆 ↔ 𝑏 ∈ { 𝑦 ∈ ω ∣ ( 𝐹 ‘ suc 𝑦 ) ⊊ ( 𝐹 ‘ 𝑦 ) } ) |
| 21 | 19 20 | sylnib | ⊢ ( ( ( 𝜑 ∧ 𝑆 ∈ Fin ) ∧ ( 𝑏 ∈ ω ∧ ∪ 𝑆 ∈ 𝑏 ) ) → ¬ 𝑏 ∈ { 𝑦 ∈ ω ∣ ( 𝐹 ‘ suc 𝑦 ) ⊊ ( 𝐹 ‘ 𝑦 ) } ) |
| 22 | suceq | ⊢ ( 𝑦 = 𝑏 → suc 𝑦 = suc 𝑏 ) | |
| 23 | 22 | fveq2d | ⊢ ( 𝑦 = 𝑏 → ( 𝐹 ‘ suc 𝑦 ) = ( 𝐹 ‘ suc 𝑏 ) ) |
| 24 | fveq2 | ⊢ ( 𝑦 = 𝑏 → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑏 ) ) | |
| 25 | 23 24 | psseq12d | ⊢ ( 𝑦 = 𝑏 → ( ( 𝐹 ‘ suc 𝑦 ) ⊊ ( 𝐹 ‘ 𝑦 ) ↔ ( 𝐹 ‘ suc 𝑏 ) ⊊ ( 𝐹 ‘ 𝑏 ) ) ) |
| 26 | 25 | elrab3 | ⊢ ( 𝑏 ∈ ω → ( 𝑏 ∈ { 𝑦 ∈ ω ∣ ( 𝐹 ‘ suc 𝑦 ) ⊊ ( 𝐹 ‘ 𝑦 ) } ↔ ( 𝐹 ‘ suc 𝑏 ) ⊊ ( 𝐹 ‘ 𝑏 ) ) ) |
| 27 | 26 | ad2antrl | ⊢ ( ( ( 𝜑 ∧ 𝑆 ∈ Fin ) ∧ ( 𝑏 ∈ ω ∧ ∪ 𝑆 ∈ 𝑏 ) ) → ( 𝑏 ∈ { 𝑦 ∈ ω ∣ ( 𝐹 ‘ suc 𝑦 ) ⊊ ( 𝐹 ‘ 𝑦 ) } ↔ ( 𝐹 ‘ suc 𝑏 ) ⊊ ( 𝐹 ‘ 𝑏 ) ) ) |
| 28 | 21 27 | mtbid | ⊢ ( ( ( 𝜑 ∧ 𝑆 ∈ Fin ) ∧ ( 𝑏 ∈ ω ∧ ∪ 𝑆 ∈ 𝑏 ) ) → ¬ ( 𝐹 ‘ suc 𝑏 ) ⊊ ( 𝐹 ‘ 𝑏 ) ) |
| 29 | 28 | expr | ⊢ ( ( ( 𝜑 ∧ 𝑆 ∈ Fin ) ∧ 𝑏 ∈ ω ) → ( ∪ 𝑆 ∈ 𝑏 → ¬ ( 𝐹 ‘ suc 𝑏 ) ⊊ ( 𝐹 ‘ 𝑏 ) ) ) |
| 30 | imnan | ⊢ ( ( ∪ 𝑆 ∈ 𝑏 → ¬ ( 𝐹 ‘ suc 𝑏 ) ⊊ ( 𝐹 ‘ 𝑏 ) ) ↔ ¬ ( ∪ 𝑆 ∈ 𝑏 ∧ ( 𝐹 ‘ suc 𝑏 ) ⊊ ( 𝐹 ‘ 𝑏 ) ) ) | |
| 31 | 29 30 | sylib | ⊢ ( ( ( 𝜑 ∧ 𝑆 ∈ Fin ) ∧ 𝑏 ∈ ω ) → ¬ ( ∪ 𝑆 ∈ 𝑏 ∧ ( 𝐹 ‘ suc 𝑏 ) ⊊ ( 𝐹 ‘ 𝑏 ) ) ) |
| 32 | 31 | nrexdv | ⊢ ( ( 𝜑 ∧ 𝑆 ∈ Fin ) → ¬ ∃ 𝑏 ∈ ω ( ∪ 𝑆 ∈ 𝑏 ∧ ( 𝐹 ‘ suc 𝑏 ) ⊊ ( 𝐹 ‘ 𝑏 ) ) ) |
| 33 | eleq1 | ⊢ ( 𝑎 = ∪ 𝑆 → ( 𝑎 ∈ 𝑏 ↔ ∪ 𝑆 ∈ 𝑏 ) ) | |
| 34 | 33 | anbi1d | ⊢ ( 𝑎 = ∪ 𝑆 → ( ( 𝑎 ∈ 𝑏 ∧ ( 𝐹 ‘ suc 𝑏 ) ⊊ ( 𝐹 ‘ 𝑏 ) ) ↔ ( ∪ 𝑆 ∈ 𝑏 ∧ ( 𝐹 ‘ suc 𝑏 ) ⊊ ( 𝐹 ‘ 𝑏 ) ) ) ) |
| 35 | 34 | rexbidv | ⊢ ( 𝑎 = ∪ 𝑆 → ( ∃ 𝑏 ∈ ω ( 𝑎 ∈ 𝑏 ∧ ( 𝐹 ‘ suc 𝑏 ) ⊊ ( 𝐹 ‘ 𝑏 ) ) ↔ ∃ 𝑏 ∈ ω ( ∪ 𝑆 ∈ 𝑏 ∧ ( 𝐹 ‘ suc 𝑏 ) ⊊ ( 𝐹 ‘ 𝑏 ) ) ) ) |
| 36 | 35 | notbid | ⊢ ( 𝑎 = ∪ 𝑆 → ( ¬ ∃ 𝑏 ∈ ω ( 𝑎 ∈ 𝑏 ∧ ( 𝐹 ‘ suc 𝑏 ) ⊊ ( 𝐹 ‘ 𝑏 ) ) ↔ ¬ ∃ 𝑏 ∈ ω ( ∪ 𝑆 ∈ 𝑏 ∧ ( 𝐹 ‘ suc 𝑏 ) ⊊ ( 𝐹 ‘ 𝑏 ) ) ) ) |
| 37 | 36 | rspcev | ⊢ ( ( ∪ 𝑆 ∈ ω ∧ ¬ ∃ 𝑏 ∈ ω ( ∪ 𝑆 ∈ 𝑏 ∧ ( 𝐹 ‘ suc 𝑏 ) ⊊ ( 𝐹 ‘ 𝑏 ) ) ) → ∃ 𝑎 ∈ ω ¬ ∃ 𝑏 ∈ ω ( 𝑎 ∈ 𝑏 ∧ ( 𝐹 ‘ suc 𝑏 ) ⊊ ( 𝐹 ‘ 𝑏 ) ) ) |
| 38 | 10 32 37 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑆 ∈ Fin ) → ∃ 𝑎 ∈ ω ¬ ∃ 𝑏 ∈ ω ( 𝑎 ∈ 𝑏 ∧ ( 𝐹 ‘ suc 𝑏 ) ⊊ ( 𝐹 ‘ 𝑏 ) ) ) |
| 39 | rexnal | ⊢ ( ∃ 𝑎 ∈ ω ¬ ∃ 𝑏 ∈ ω ( 𝑎 ∈ 𝑏 ∧ ( 𝐹 ‘ suc 𝑏 ) ⊊ ( 𝐹 ‘ 𝑏 ) ) ↔ ¬ ∀ 𝑎 ∈ ω ∃ 𝑏 ∈ ω ( 𝑎 ∈ 𝑏 ∧ ( 𝐹 ‘ suc 𝑏 ) ⊊ ( 𝐹 ‘ 𝑏 ) ) ) | |
| 40 | 38 39 | sylib | ⊢ ( ( 𝜑 ∧ 𝑆 ∈ Fin ) → ¬ ∀ 𝑎 ∈ ω ∃ 𝑏 ∈ ω ( 𝑎 ∈ 𝑏 ∧ ( 𝐹 ‘ suc 𝑏 ) ⊊ ( 𝐹 ‘ 𝑏 ) ) ) |
| 41 | 40 | ex | ⊢ ( 𝜑 → ( 𝑆 ∈ Fin → ¬ ∀ 𝑎 ∈ ω ∃ 𝑏 ∈ ω ( 𝑎 ∈ 𝑏 ∧ ( 𝐹 ‘ suc 𝑏 ) ⊊ ( 𝐹 ‘ 𝑏 ) ) ) ) |
| 42 | 6 41 | mt2d | ⊢ ( 𝜑 → ¬ 𝑆 ∈ Fin ) |