This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for isfin3-2 . Each K value is nonempty. (Contributed by Stefan O'Rear, 5-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isf32lem.a | ⊢ ( 𝜑 → 𝐹 : ω ⟶ 𝒫 𝐺 ) | |
| isf32lem.b | ⊢ ( 𝜑 → ∀ 𝑥 ∈ ω ( 𝐹 ‘ suc 𝑥 ) ⊆ ( 𝐹 ‘ 𝑥 ) ) | ||
| isf32lem.c | ⊢ ( 𝜑 → ¬ ∩ ran 𝐹 ∈ ran 𝐹 ) | ||
| isf32lem.d | ⊢ 𝑆 = { 𝑦 ∈ ω ∣ ( 𝐹 ‘ suc 𝑦 ) ⊊ ( 𝐹 ‘ 𝑦 ) } | ||
| isf32lem.e | ⊢ 𝐽 = ( 𝑢 ∈ ω ↦ ( ℩ 𝑣 ∈ 𝑆 ( 𝑣 ∩ 𝑆 ) ≈ 𝑢 ) ) | ||
| isf32lem.f | ⊢ 𝐾 = ( ( 𝑤 ∈ 𝑆 ↦ ( ( 𝐹 ‘ 𝑤 ) ∖ ( 𝐹 ‘ suc 𝑤 ) ) ) ∘ 𝐽 ) | ||
| Assertion | isf32lem6 | ⊢ ( ( 𝜑 ∧ 𝐴 ∈ ω ) → ( 𝐾 ‘ 𝐴 ) ≠ ∅ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isf32lem.a | ⊢ ( 𝜑 → 𝐹 : ω ⟶ 𝒫 𝐺 ) | |
| 2 | isf32lem.b | ⊢ ( 𝜑 → ∀ 𝑥 ∈ ω ( 𝐹 ‘ suc 𝑥 ) ⊆ ( 𝐹 ‘ 𝑥 ) ) | |
| 3 | isf32lem.c | ⊢ ( 𝜑 → ¬ ∩ ran 𝐹 ∈ ran 𝐹 ) | |
| 4 | isf32lem.d | ⊢ 𝑆 = { 𝑦 ∈ ω ∣ ( 𝐹 ‘ suc 𝑦 ) ⊊ ( 𝐹 ‘ 𝑦 ) } | |
| 5 | isf32lem.e | ⊢ 𝐽 = ( 𝑢 ∈ ω ↦ ( ℩ 𝑣 ∈ 𝑆 ( 𝑣 ∩ 𝑆 ) ≈ 𝑢 ) ) | |
| 6 | isf32lem.f | ⊢ 𝐾 = ( ( 𝑤 ∈ 𝑆 ↦ ( ( 𝐹 ‘ 𝑤 ) ∖ ( 𝐹 ‘ suc 𝑤 ) ) ) ∘ 𝐽 ) | |
| 7 | 6 | fveq1i | ⊢ ( 𝐾 ‘ 𝐴 ) = ( ( ( 𝑤 ∈ 𝑆 ↦ ( ( 𝐹 ‘ 𝑤 ) ∖ ( 𝐹 ‘ suc 𝑤 ) ) ) ∘ 𝐽 ) ‘ 𝐴 ) |
| 8 | 4 | ssrab3 | ⊢ 𝑆 ⊆ ω |
| 9 | 1 2 3 4 | isf32lem5 | ⊢ ( 𝜑 → ¬ 𝑆 ∈ Fin ) |
| 10 | 5 | fin23lem22 | ⊢ ( ( 𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin ) → 𝐽 : ω –1-1-onto→ 𝑆 ) |
| 11 | 8 9 10 | sylancr | ⊢ ( 𝜑 → 𝐽 : ω –1-1-onto→ 𝑆 ) |
| 12 | f1of | ⊢ ( 𝐽 : ω –1-1-onto→ 𝑆 → 𝐽 : ω ⟶ 𝑆 ) | |
| 13 | 11 12 | syl | ⊢ ( 𝜑 → 𝐽 : ω ⟶ 𝑆 ) |
| 14 | fvco3 | ⊢ ( ( 𝐽 : ω ⟶ 𝑆 ∧ 𝐴 ∈ ω ) → ( ( ( 𝑤 ∈ 𝑆 ↦ ( ( 𝐹 ‘ 𝑤 ) ∖ ( 𝐹 ‘ suc 𝑤 ) ) ) ∘ 𝐽 ) ‘ 𝐴 ) = ( ( 𝑤 ∈ 𝑆 ↦ ( ( 𝐹 ‘ 𝑤 ) ∖ ( 𝐹 ‘ suc 𝑤 ) ) ) ‘ ( 𝐽 ‘ 𝐴 ) ) ) | |
| 15 | 13 14 | sylan | ⊢ ( ( 𝜑 ∧ 𝐴 ∈ ω ) → ( ( ( 𝑤 ∈ 𝑆 ↦ ( ( 𝐹 ‘ 𝑤 ) ∖ ( 𝐹 ‘ suc 𝑤 ) ) ) ∘ 𝐽 ) ‘ 𝐴 ) = ( ( 𝑤 ∈ 𝑆 ↦ ( ( 𝐹 ‘ 𝑤 ) ∖ ( 𝐹 ‘ suc 𝑤 ) ) ) ‘ ( 𝐽 ‘ 𝐴 ) ) ) |
| 16 | 9 | adantr | ⊢ ( ( 𝜑 ∧ 𝐴 ∈ ω ) → ¬ 𝑆 ∈ Fin ) |
| 17 | 8 16 10 | sylancr | ⊢ ( ( 𝜑 ∧ 𝐴 ∈ ω ) → 𝐽 : ω –1-1-onto→ 𝑆 ) |
| 18 | 17 12 | syl | ⊢ ( ( 𝜑 ∧ 𝐴 ∈ ω ) → 𝐽 : ω ⟶ 𝑆 ) |
| 19 | ffvelcdm | ⊢ ( ( 𝐽 : ω ⟶ 𝑆 ∧ 𝐴 ∈ ω ) → ( 𝐽 ‘ 𝐴 ) ∈ 𝑆 ) | |
| 20 | 18 19 | sylancom | ⊢ ( ( 𝜑 ∧ 𝐴 ∈ ω ) → ( 𝐽 ‘ 𝐴 ) ∈ 𝑆 ) |
| 21 | fveq2 | ⊢ ( 𝑤 = ( 𝐽 ‘ 𝐴 ) → ( 𝐹 ‘ 𝑤 ) = ( 𝐹 ‘ ( 𝐽 ‘ 𝐴 ) ) ) | |
| 22 | suceq | ⊢ ( 𝑤 = ( 𝐽 ‘ 𝐴 ) → suc 𝑤 = suc ( 𝐽 ‘ 𝐴 ) ) | |
| 23 | 22 | fveq2d | ⊢ ( 𝑤 = ( 𝐽 ‘ 𝐴 ) → ( 𝐹 ‘ suc 𝑤 ) = ( 𝐹 ‘ suc ( 𝐽 ‘ 𝐴 ) ) ) |
| 24 | 21 23 | difeq12d | ⊢ ( 𝑤 = ( 𝐽 ‘ 𝐴 ) → ( ( 𝐹 ‘ 𝑤 ) ∖ ( 𝐹 ‘ suc 𝑤 ) ) = ( ( 𝐹 ‘ ( 𝐽 ‘ 𝐴 ) ) ∖ ( 𝐹 ‘ suc ( 𝐽 ‘ 𝐴 ) ) ) ) |
| 25 | eqid | ⊢ ( 𝑤 ∈ 𝑆 ↦ ( ( 𝐹 ‘ 𝑤 ) ∖ ( 𝐹 ‘ suc 𝑤 ) ) ) = ( 𝑤 ∈ 𝑆 ↦ ( ( 𝐹 ‘ 𝑤 ) ∖ ( 𝐹 ‘ suc 𝑤 ) ) ) | |
| 26 | fvex | ⊢ ( 𝐹 ‘ ( 𝐽 ‘ 𝐴 ) ) ∈ V | |
| 27 | 26 | difexi | ⊢ ( ( 𝐹 ‘ ( 𝐽 ‘ 𝐴 ) ) ∖ ( 𝐹 ‘ suc ( 𝐽 ‘ 𝐴 ) ) ) ∈ V |
| 28 | 24 25 27 | fvmpt | ⊢ ( ( 𝐽 ‘ 𝐴 ) ∈ 𝑆 → ( ( 𝑤 ∈ 𝑆 ↦ ( ( 𝐹 ‘ 𝑤 ) ∖ ( 𝐹 ‘ suc 𝑤 ) ) ) ‘ ( 𝐽 ‘ 𝐴 ) ) = ( ( 𝐹 ‘ ( 𝐽 ‘ 𝐴 ) ) ∖ ( 𝐹 ‘ suc ( 𝐽 ‘ 𝐴 ) ) ) ) |
| 29 | 20 28 | syl | ⊢ ( ( 𝜑 ∧ 𝐴 ∈ ω ) → ( ( 𝑤 ∈ 𝑆 ↦ ( ( 𝐹 ‘ 𝑤 ) ∖ ( 𝐹 ‘ suc 𝑤 ) ) ) ‘ ( 𝐽 ‘ 𝐴 ) ) = ( ( 𝐹 ‘ ( 𝐽 ‘ 𝐴 ) ) ∖ ( 𝐹 ‘ suc ( 𝐽 ‘ 𝐴 ) ) ) ) |
| 30 | 15 29 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝐴 ∈ ω ) → ( ( ( 𝑤 ∈ 𝑆 ↦ ( ( 𝐹 ‘ 𝑤 ) ∖ ( 𝐹 ‘ suc 𝑤 ) ) ) ∘ 𝐽 ) ‘ 𝐴 ) = ( ( 𝐹 ‘ ( 𝐽 ‘ 𝐴 ) ) ∖ ( 𝐹 ‘ suc ( 𝐽 ‘ 𝐴 ) ) ) ) |
| 31 | 7 30 | eqtrid | ⊢ ( ( 𝜑 ∧ 𝐴 ∈ ω ) → ( 𝐾 ‘ 𝐴 ) = ( ( 𝐹 ‘ ( 𝐽 ‘ 𝐴 ) ) ∖ ( 𝐹 ‘ suc ( 𝐽 ‘ 𝐴 ) ) ) ) |
| 32 | suceq | ⊢ ( 𝑦 = ( 𝐽 ‘ 𝐴 ) → suc 𝑦 = suc ( 𝐽 ‘ 𝐴 ) ) | |
| 33 | 32 | fveq2d | ⊢ ( 𝑦 = ( 𝐽 ‘ 𝐴 ) → ( 𝐹 ‘ suc 𝑦 ) = ( 𝐹 ‘ suc ( 𝐽 ‘ 𝐴 ) ) ) |
| 34 | fveq2 | ⊢ ( 𝑦 = ( 𝐽 ‘ 𝐴 ) → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ ( 𝐽 ‘ 𝐴 ) ) ) | |
| 35 | 33 34 | psseq12d | ⊢ ( 𝑦 = ( 𝐽 ‘ 𝐴 ) → ( ( 𝐹 ‘ suc 𝑦 ) ⊊ ( 𝐹 ‘ 𝑦 ) ↔ ( 𝐹 ‘ suc ( 𝐽 ‘ 𝐴 ) ) ⊊ ( 𝐹 ‘ ( 𝐽 ‘ 𝐴 ) ) ) ) |
| 36 | 35 4 | elrab2 | ⊢ ( ( 𝐽 ‘ 𝐴 ) ∈ 𝑆 ↔ ( ( 𝐽 ‘ 𝐴 ) ∈ ω ∧ ( 𝐹 ‘ suc ( 𝐽 ‘ 𝐴 ) ) ⊊ ( 𝐹 ‘ ( 𝐽 ‘ 𝐴 ) ) ) ) |
| 37 | 36 | simprbi | ⊢ ( ( 𝐽 ‘ 𝐴 ) ∈ 𝑆 → ( 𝐹 ‘ suc ( 𝐽 ‘ 𝐴 ) ) ⊊ ( 𝐹 ‘ ( 𝐽 ‘ 𝐴 ) ) ) |
| 38 | 20 37 | syl | ⊢ ( ( 𝜑 ∧ 𝐴 ∈ ω ) → ( 𝐹 ‘ suc ( 𝐽 ‘ 𝐴 ) ) ⊊ ( 𝐹 ‘ ( 𝐽 ‘ 𝐴 ) ) ) |
| 39 | df-pss | ⊢ ( ( 𝐹 ‘ suc ( 𝐽 ‘ 𝐴 ) ) ⊊ ( 𝐹 ‘ ( 𝐽 ‘ 𝐴 ) ) ↔ ( ( 𝐹 ‘ suc ( 𝐽 ‘ 𝐴 ) ) ⊆ ( 𝐹 ‘ ( 𝐽 ‘ 𝐴 ) ) ∧ ( 𝐹 ‘ suc ( 𝐽 ‘ 𝐴 ) ) ≠ ( 𝐹 ‘ ( 𝐽 ‘ 𝐴 ) ) ) ) | |
| 40 | 38 39 | sylib | ⊢ ( ( 𝜑 ∧ 𝐴 ∈ ω ) → ( ( 𝐹 ‘ suc ( 𝐽 ‘ 𝐴 ) ) ⊆ ( 𝐹 ‘ ( 𝐽 ‘ 𝐴 ) ) ∧ ( 𝐹 ‘ suc ( 𝐽 ‘ 𝐴 ) ) ≠ ( 𝐹 ‘ ( 𝐽 ‘ 𝐴 ) ) ) ) |
| 41 | pssdifn0 | ⊢ ( ( ( 𝐹 ‘ suc ( 𝐽 ‘ 𝐴 ) ) ⊆ ( 𝐹 ‘ ( 𝐽 ‘ 𝐴 ) ) ∧ ( 𝐹 ‘ suc ( 𝐽 ‘ 𝐴 ) ) ≠ ( 𝐹 ‘ ( 𝐽 ‘ 𝐴 ) ) ) → ( ( 𝐹 ‘ ( 𝐽 ‘ 𝐴 ) ) ∖ ( 𝐹 ‘ suc ( 𝐽 ‘ 𝐴 ) ) ) ≠ ∅ ) | |
| 42 | 40 41 | syl | ⊢ ( ( 𝜑 ∧ 𝐴 ∈ ω ) → ( ( 𝐹 ‘ ( 𝐽 ‘ 𝐴 ) ) ∖ ( 𝐹 ‘ suc ( 𝐽 ‘ 𝐴 ) ) ) ≠ ∅ ) |
| 43 | 31 42 | eqnetrd | ⊢ ( ( 𝜑 ∧ 𝐴 ∈ ω ) → ( 𝐾 ‘ 𝐴 ) ≠ ∅ ) |