This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for isfin3-2 . Being a chain, difference sets are disjoint. (Contributed by Stefan O'Rear, 5-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isf32lem.a | |- ( ph -> F : _om --> ~P G ) |
|
| isf32lem.b | |- ( ph -> A. x e. _om ( F ` suc x ) C_ ( F ` x ) ) |
||
| isf32lem.c | |- ( ph -> -. |^| ran F e. ran F ) |
||
| Assertion | isf32lem4 | |- ( ( ( ph /\ A =/= B ) /\ ( A e. _om /\ B e. _om ) ) -> ( ( ( F ` A ) \ ( F ` suc A ) ) i^i ( ( F ` B ) \ ( F ` suc B ) ) ) = (/) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isf32lem.a | |- ( ph -> F : _om --> ~P G ) |
|
| 2 | isf32lem.b | |- ( ph -> A. x e. _om ( F ` suc x ) C_ ( F ` x ) ) |
|
| 3 | isf32lem.c | |- ( ph -> -. |^| ran F e. ran F ) |
|
| 4 | simplrr | |- ( ( ( ( ph /\ A =/= B ) /\ ( A e. _om /\ B e. _om ) ) /\ A e. B ) -> B e. _om ) |
|
| 5 | simplrl | |- ( ( ( ( ph /\ A =/= B ) /\ ( A e. _om /\ B e. _om ) ) /\ A e. B ) -> A e. _om ) |
|
| 6 | simpr | |- ( ( ( ( ph /\ A =/= B ) /\ ( A e. _om /\ B e. _om ) ) /\ A e. B ) -> A e. B ) |
|
| 7 | simplll | |- ( ( ( ( ph /\ A =/= B ) /\ ( A e. _om /\ B e. _om ) ) /\ A e. B ) -> ph ) |
|
| 8 | incom | |- ( ( ( F ` A ) \ ( F ` suc A ) ) i^i ( ( F ` B ) \ ( F ` suc B ) ) ) = ( ( ( F ` B ) \ ( F ` suc B ) ) i^i ( ( F ` A ) \ ( F ` suc A ) ) ) |
|
| 9 | 1 2 3 | isf32lem3 | |- ( ( ( B e. _om /\ A e. _om ) /\ ( A e. B /\ ph ) ) -> ( ( ( F ` B ) \ ( F ` suc B ) ) i^i ( ( F ` A ) \ ( F ` suc A ) ) ) = (/) ) |
| 10 | 8 9 | eqtrid | |- ( ( ( B e. _om /\ A e. _om ) /\ ( A e. B /\ ph ) ) -> ( ( ( F ` A ) \ ( F ` suc A ) ) i^i ( ( F ` B ) \ ( F ` suc B ) ) ) = (/) ) |
| 11 | 4 5 6 7 10 | syl22anc | |- ( ( ( ( ph /\ A =/= B ) /\ ( A e. _om /\ B e. _om ) ) /\ A e. B ) -> ( ( ( F ` A ) \ ( F ` suc A ) ) i^i ( ( F ` B ) \ ( F ` suc B ) ) ) = (/) ) |
| 12 | simplrl | |- ( ( ( ( ph /\ A =/= B ) /\ ( A e. _om /\ B e. _om ) ) /\ B e. A ) -> A e. _om ) |
|
| 13 | simplrr | |- ( ( ( ( ph /\ A =/= B ) /\ ( A e. _om /\ B e. _om ) ) /\ B e. A ) -> B e. _om ) |
|
| 14 | simpr | |- ( ( ( ( ph /\ A =/= B ) /\ ( A e. _om /\ B e. _om ) ) /\ B e. A ) -> B e. A ) |
|
| 15 | simplll | |- ( ( ( ( ph /\ A =/= B ) /\ ( A e. _om /\ B e. _om ) ) /\ B e. A ) -> ph ) |
|
| 16 | 1 2 3 | isf32lem3 | |- ( ( ( A e. _om /\ B e. _om ) /\ ( B e. A /\ ph ) ) -> ( ( ( F ` A ) \ ( F ` suc A ) ) i^i ( ( F ` B ) \ ( F ` suc B ) ) ) = (/) ) |
| 17 | 12 13 14 15 16 | syl22anc | |- ( ( ( ( ph /\ A =/= B ) /\ ( A e. _om /\ B e. _om ) ) /\ B e. A ) -> ( ( ( F ` A ) \ ( F ` suc A ) ) i^i ( ( F ` B ) \ ( F ` suc B ) ) ) = (/) ) |
| 18 | simplr | |- ( ( ( ph /\ A =/= B ) /\ ( A e. _om /\ B e. _om ) ) -> A =/= B ) |
|
| 19 | nnord | |- ( A e. _om -> Ord A ) |
|
| 20 | nnord | |- ( B e. _om -> Ord B ) |
|
| 21 | ordtri3 | |- ( ( Ord A /\ Ord B ) -> ( A = B <-> -. ( A e. B \/ B e. A ) ) ) |
|
| 22 | 19 20 21 | syl2an | |- ( ( A e. _om /\ B e. _om ) -> ( A = B <-> -. ( A e. B \/ B e. A ) ) ) |
| 23 | 22 | adantl | |- ( ( ( ph /\ A =/= B ) /\ ( A e. _om /\ B e. _om ) ) -> ( A = B <-> -. ( A e. B \/ B e. A ) ) ) |
| 24 | 23 | necon2abid | |- ( ( ( ph /\ A =/= B ) /\ ( A e. _om /\ B e. _om ) ) -> ( ( A e. B \/ B e. A ) <-> A =/= B ) ) |
| 25 | 18 24 | mpbird | |- ( ( ( ph /\ A =/= B ) /\ ( A e. _om /\ B e. _om ) ) -> ( A e. B \/ B e. A ) ) |
| 26 | 11 17 25 | mpjaodan | |- ( ( ( ph /\ A =/= B ) /\ ( A e. _om /\ B e. _om ) ) -> ( ( ( F ` A ) \ ( F ` suc A ) ) i^i ( ( F ` B ) \ ( F ` suc B ) ) ) = (/) ) |