This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for isfin3-2 . Being a chain, difference sets are disjoint (one case). (Contributed by Stefan O'Rear, 5-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isf32lem.a | ⊢ ( 𝜑 → 𝐹 : ω ⟶ 𝒫 𝐺 ) | |
| isf32lem.b | ⊢ ( 𝜑 → ∀ 𝑥 ∈ ω ( 𝐹 ‘ suc 𝑥 ) ⊆ ( 𝐹 ‘ 𝑥 ) ) | ||
| isf32lem.c | ⊢ ( 𝜑 → ¬ ∩ ran 𝐹 ∈ ran 𝐹 ) | ||
| Assertion | isf32lem3 | ⊢ ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ∧ ( 𝐵 ∈ 𝐴 ∧ 𝜑 ) ) → ( ( ( 𝐹 ‘ 𝐴 ) ∖ ( 𝐹 ‘ suc 𝐴 ) ) ∩ ( ( 𝐹 ‘ 𝐵 ) ∖ ( 𝐹 ‘ suc 𝐵 ) ) ) = ∅ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isf32lem.a | ⊢ ( 𝜑 → 𝐹 : ω ⟶ 𝒫 𝐺 ) | |
| 2 | isf32lem.b | ⊢ ( 𝜑 → ∀ 𝑥 ∈ ω ( 𝐹 ‘ suc 𝑥 ) ⊆ ( 𝐹 ‘ 𝑥 ) ) | |
| 3 | isf32lem.c | ⊢ ( 𝜑 → ¬ ∩ ran 𝐹 ∈ ran 𝐹 ) | |
| 4 | eldifi | ⊢ ( 𝑎 ∈ ( ( 𝐹 ‘ 𝐴 ) ∖ ( 𝐹 ‘ suc 𝐴 ) ) → 𝑎 ∈ ( 𝐹 ‘ 𝐴 ) ) | |
| 5 | simpll | ⊢ ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ∧ ( 𝐵 ∈ 𝐴 ∧ 𝜑 ) ) → 𝐴 ∈ ω ) | |
| 6 | peano2 | ⊢ ( 𝐵 ∈ ω → suc 𝐵 ∈ ω ) | |
| 7 | 6 | ad2antlr | ⊢ ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ∧ ( 𝐵 ∈ 𝐴 ∧ 𝜑 ) ) → suc 𝐵 ∈ ω ) |
| 8 | nnord | ⊢ ( 𝐴 ∈ ω → Ord 𝐴 ) | |
| 9 | 8 | ad2antrr | ⊢ ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ∧ ( 𝐵 ∈ 𝐴 ∧ 𝜑 ) ) → Ord 𝐴 ) |
| 10 | simprl | ⊢ ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ∧ ( 𝐵 ∈ 𝐴 ∧ 𝜑 ) ) → 𝐵 ∈ 𝐴 ) | |
| 11 | ordsucss | ⊢ ( Ord 𝐴 → ( 𝐵 ∈ 𝐴 → suc 𝐵 ⊆ 𝐴 ) ) | |
| 12 | 9 10 11 | sylc | ⊢ ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ∧ ( 𝐵 ∈ 𝐴 ∧ 𝜑 ) ) → suc 𝐵 ⊆ 𝐴 ) |
| 13 | simprr | ⊢ ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ∧ ( 𝐵 ∈ 𝐴 ∧ 𝜑 ) ) → 𝜑 ) | |
| 14 | 1 2 3 | isf32lem1 | ⊢ ( ( ( 𝐴 ∈ ω ∧ suc 𝐵 ∈ ω ) ∧ ( suc 𝐵 ⊆ 𝐴 ∧ 𝜑 ) ) → ( 𝐹 ‘ 𝐴 ) ⊆ ( 𝐹 ‘ suc 𝐵 ) ) |
| 15 | 5 7 12 13 14 | syl22anc | ⊢ ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ∧ ( 𝐵 ∈ 𝐴 ∧ 𝜑 ) ) → ( 𝐹 ‘ 𝐴 ) ⊆ ( 𝐹 ‘ suc 𝐵 ) ) |
| 16 | 15 | sseld | ⊢ ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ∧ ( 𝐵 ∈ 𝐴 ∧ 𝜑 ) ) → ( 𝑎 ∈ ( 𝐹 ‘ 𝐴 ) → 𝑎 ∈ ( 𝐹 ‘ suc 𝐵 ) ) ) |
| 17 | elndif | ⊢ ( 𝑎 ∈ ( 𝐹 ‘ suc 𝐵 ) → ¬ 𝑎 ∈ ( ( 𝐹 ‘ 𝐵 ) ∖ ( 𝐹 ‘ suc 𝐵 ) ) ) | |
| 18 | 4 16 17 | syl56 | ⊢ ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ∧ ( 𝐵 ∈ 𝐴 ∧ 𝜑 ) ) → ( 𝑎 ∈ ( ( 𝐹 ‘ 𝐴 ) ∖ ( 𝐹 ‘ suc 𝐴 ) ) → ¬ 𝑎 ∈ ( ( 𝐹 ‘ 𝐵 ) ∖ ( 𝐹 ‘ suc 𝐵 ) ) ) ) |
| 19 | 18 | ralrimiv | ⊢ ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ∧ ( 𝐵 ∈ 𝐴 ∧ 𝜑 ) ) → ∀ 𝑎 ∈ ( ( 𝐹 ‘ 𝐴 ) ∖ ( 𝐹 ‘ suc 𝐴 ) ) ¬ 𝑎 ∈ ( ( 𝐹 ‘ 𝐵 ) ∖ ( 𝐹 ‘ suc 𝐵 ) ) ) |
| 20 | disj | ⊢ ( ( ( ( 𝐹 ‘ 𝐴 ) ∖ ( 𝐹 ‘ suc 𝐴 ) ) ∩ ( ( 𝐹 ‘ 𝐵 ) ∖ ( 𝐹 ‘ suc 𝐵 ) ) ) = ∅ ↔ ∀ 𝑎 ∈ ( ( 𝐹 ‘ 𝐴 ) ∖ ( 𝐹 ‘ suc 𝐴 ) ) ¬ 𝑎 ∈ ( ( 𝐹 ‘ 𝐵 ) ∖ ( 𝐹 ‘ suc 𝐵 ) ) ) | |
| 21 | 19 20 | sylibr | ⊢ ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ∧ ( 𝐵 ∈ 𝐴 ∧ 𝜑 ) ) → ( ( ( 𝐹 ‘ 𝐴 ) ∖ ( 𝐹 ‘ suc 𝐴 ) ) ∩ ( ( 𝐹 ‘ 𝐵 ) ∖ ( 𝐹 ‘ suc 𝐵 ) ) ) = ∅ ) |