This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for isfin3-2 . Derive weak ordering property. (Contributed by Stefan O'Rear, 5-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isf32lem.a | ⊢ ( 𝜑 → 𝐹 : ω ⟶ 𝒫 𝐺 ) | |
| isf32lem.b | ⊢ ( 𝜑 → ∀ 𝑥 ∈ ω ( 𝐹 ‘ suc 𝑥 ) ⊆ ( 𝐹 ‘ 𝑥 ) ) | ||
| isf32lem.c | ⊢ ( 𝜑 → ¬ ∩ ran 𝐹 ∈ ran 𝐹 ) | ||
| Assertion | isf32lem1 | ⊢ ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ∧ ( 𝐵 ⊆ 𝐴 ∧ 𝜑 ) ) → ( 𝐹 ‘ 𝐴 ) ⊆ ( 𝐹 ‘ 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isf32lem.a | ⊢ ( 𝜑 → 𝐹 : ω ⟶ 𝒫 𝐺 ) | |
| 2 | isf32lem.b | ⊢ ( 𝜑 → ∀ 𝑥 ∈ ω ( 𝐹 ‘ suc 𝑥 ) ⊆ ( 𝐹 ‘ 𝑥 ) ) | |
| 3 | isf32lem.c | ⊢ ( 𝜑 → ¬ ∩ ran 𝐹 ∈ ran 𝐹 ) | |
| 4 | fveq2 | ⊢ ( 𝑎 = 𝐵 → ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝐵 ) ) | |
| 5 | 4 | sseq1d | ⊢ ( 𝑎 = 𝐵 → ( ( 𝐹 ‘ 𝑎 ) ⊆ ( 𝐹 ‘ 𝐵 ) ↔ ( 𝐹 ‘ 𝐵 ) ⊆ ( 𝐹 ‘ 𝐵 ) ) ) |
| 6 | 5 | imbi2d | ⊢ ( 𝑎 = 𝐵 → ( ( 𝜑 → ( 𝐹 ‘ 𝑎 ) ⊆ ( 𝐹 ‘ 𝐵 ) ) ↔ ( 𝜑 → ( 𝐹 ‘ 𝐵 ) ⊆ ( 𝐹 ‘ 𝐵 ) ) ) ) |
| 7 | fveq2 | ⊢ ( 𝑎 = 𝑏 → ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑏 ) ) | |
| 8 | 7 | sseq1d | ⊢ ( 𝑎 = 𝑏 → ( ( 𝐹 ‘ 𝑎 ) ⊆ ( 𝐹 ‘ 𝐵 ) ↔ ( 𝐹 ‘ 𝑏 ) ⊆ ( 𝐹 ‘ 𝐵 ) ) ) |
| 9 | 8 | imbi2d | ⊢ ( 𝑎 = 𝑏 → ( ( 𝜑 → ( 𝐹 ‘ 𝑎 ) ⊆ ( 𝐹 ‘ 𝐵 ) ) ↔ ( 𝜑 → ( 𝐹 ‘ 𝑏 ) ⊆ ( 𝐹 ‘ 𝐵 ) ) ) ) |
| 10 | fveq2 | ⊢ ( 𝑎 = suc 𝑏 → ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ suc 𝑏 ) ) | |
| 11 | 10 | sseq1d | ⊢ ( 𝑎 = suc 𝑏 → ( ( 𝐹 ‘ 𝑎 ) ⊆ ( 𝐹 ‘ 𝐵 ) ↔ ( 𝐹 ‘ suc 𝑏 ) ⊆ ( 𝐹 ‘ 𝐵 ) ) ) |
| 12 | 11 | imbi2d | ⊢ ( 𝑎 = suc 𝑏 → ( ( 𝜑 → ( 𝐹 ‘ 𝑎 ) ⊆ ( 𝐹 ‘ 𝐵 ) ) ↔ ( 𝜑 → ( 𝐹 ‘ suc 𝑏 ) ⊆ ( 𝐹 ‘ 𝐵 ) ) ) ) |
| 13 | fveq2 | ⊢ ( 𝑎 = 𝐴 → ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝐴 ) ) | |
| 14 | 13 | sseq1d | ⊢ ( 𝑎 = 𝐴 → ( ( 𝐹 ‘ 𝑎 ) ⊆ ( 𝐹 ‘ 𝐵 ) ↔ ( 𝐹 ‘ 𝐴 ) ⊆ ( 𝐹 ‘ 𝐵 ) ) ) |
| 15 | 14 | imbi2d | ⊢ ( 𝑎 = 𝐴 → ( ( 𝜑 → ( 𝐹 ‘ 𝑎 ) ⊆ ( 𝐹 ‘ 𝐵 ) ) ↔ ( 𝜑 → ( 𝐹 ‘ 𝐴 ) ⊆ ( 𝐹 ‘ 𝐵 ) ) ) ) |
| 16 | ssid | ⊢ ( 𝐹 ‘ 𝐵 ) ⊆ ( 𝐹 ‘ 𝐵 ) | |
| 17 | 16 | 2a1i | ⊢ ( 𝐵 ∈ ω → ( 𝜑 → ( 𝐹 ‘ 𝐵 ) ⊆ ( 𝐹 ‘ 𝐵 ) ) ) |
| 18 | suceq | ⊢ ( 𝑥 = 𝑏 → suc 𝑥 = suc 𝑏 ) | |
| 19 | 18 | fveq2d | ⊢ ( 𝑥 = 𝑏 → ( 𝐹 ‘ suc 𝑥 ) = ( 𝐹 ‘ suc 𝑏 ) ) |
| 20 | fveq2 | ⊢ ( 𝑥 = 𝑏 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑏 ) ) | |
| 21 | 19 20 | sseq12d | ⊢ ( 𝑥 = 𝑏 → ( ( 𝐹 ‘ suc 𝑥 ) ⊆ ( 𝐹 ‘ 𝑥 ) ↔ ( 𝐹 ‘ suc 𝑏 ) ⊆ ( 𝐹 ‘ 𝑏 ) ) ) |
| 22 | 21 | rspcv | ⊢ ( 𝑏 ∈ ω → ( ∀ 𝑥 ∈ ω ( 𝐹 ‘ suc 𝑥 ) ⊆ ( 𝐹 ‘ 𝑥 ) → ( 𝐹 ‘ suc 𝑏 ) ⊆ ( 𝐹 ‘ 𝑏 ) ) ) |
| 23 | 2 22 | syl5 | ⊢ ( 𝑏 ∈ ω → ( 𝜑 → ( 𝐹 ‘ suc 𝑏 ) ⊆ ( 𝐹 ‘ 𝑏 ) ) ) |
| 24 | 23 | ad2antrr | ⊢ ( ( ( 𝑏 ∈ ω ∧ 𝐵 ∈ ω ) ∧ 𝐵 ⊆ 𝑏 ) → ( 𝜑 → ( 𝐹 ‘ suc 𝑏 ) ⊆ ( 𝐹 ‘ 𝑏 ) ) ) |
| 25 | sstr2 | ⊢ ( ( 𝐹 ‘ suc 𝑏 ) ⊆ ( 𝐹 ‘ 𝑏 ) → ( ( 𝐹 ‘ 𝑏 ) ⊆ ( 𝐹 ‘ 𝐵 ) → ( 𝐹 ‘ suc 𝑏 ) ⊆ ( 𝐹 ‘ 𝐵 ) ) ) | |
| 26 | 24 25 | syl6 | ⊢ ( ( ( 𝑏 ∈ ω ∧ 𝐵 ∈ ω ) ∧ 𝐵 ⊆ 𝑏 ) → ( 𝜑 → ( ( 𝐹 ‘ 𝑏 ) ⊆ ( 𝐹 ‘ 𝐵 ) → ( 𝐹 ‘ suc 𝑏 ) ⊆ ( 𝐹 ‘ 𝐵 ) ) ) ) |
| 27 | 26 | a2d | ⊢ ( ( ( 𝑏 ∈ ω ∧ 𝐵 ∈ ω ) ∧ 𝐵 ⊆ 𝑏 ) → ( ( 𝜑 → ( 𝐹 ‘ 𝑏 ) ⊆ ( 𝐹 ‘ 𝐵 ) ) → ( 𝜑 → ( 𝐹 ‘ suc 𝑏 ) ⊆ ( 𝐹 ‘ 𝐵 ) ) ) ) |
| 28 | 6 9 12 15 17 27 | findsg | ⊢ ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ∧ 𝐵 ⊆ 𝐴 ) → ( 𝜑 → ( 𝐹 ‘ 𝐴 ) ⊆ ( 𝐹 ‘ 𝐵 ) ) ) |
| 29 | 28 | impr | ⊢ ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ∧ ( 𝐵 ⊆ 𝐴 ∧ 𝜑 ) ) → ( 𝐹 ‘ 𝐴 ) ⊆ ( 𝐹 ‘ 𝐵 ) ) |