This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The predicate G has a left and right identity element. (Contributed by FL, 2-Nov-2009) (Revised by Mario Carneiro, 22-Dec-2013) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | isexid.1 | |- X = dom dom G |
|
| Assertion | isexid | |- ( G e. A -> ( G e. ExId <-> E. x e. X A. y e. X ( ( x G y ) = y /\ ( y G x ) = y ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isexid.1 | |- X = dom dom G |
|
| 2 | dmeq | |- ( g = G -> dom g = dom G ) |
|
| 3 | 2 | dmeqd | |- ( g = G -> dom dom g = dom dom G ) |
| 4 | 3 1 | eqtr4di | |- ( g = G -> dom dom g = X ) |
| 5 | oveq | |- ( g = G -> ( x g y ) = ( x G y ) ) |
|
| 6 | 5 | eqeq1d | |- ( g = G -> ( ( x g y ) = y <-> ( x G y ) = y ) ) |
| 7 | oveq | |- ( g = G -> ( y g x ) = ( y G x ) ) |
|
| 8 | 7 | eqeq1d | |- ( g = G -> ( ( y g x ) = y <-> ( y G x ) = y ) ) |
| 9 | 6 8 | anbi12d | |- ( g = G -> ( ( ( x g y ) = y /\ ( y g x ) = y ) <-> ( ( x G y ) = y /\ ( y G x ) = y ) ) ) |
| 10 | 4 9 | raleqbidv | |- ( g = G -> ( A. y e. dom dom g ( ( x g y ) = y /\ ( y g x ) = y ) <-> A. y e. X ( ( x G y ) = y /\ ( y G x ) = y ) ) ) |
| 11 | 4 10 | rexeqbidv | |- ( g = G -> ( E. x e. dom dom g A. y e. dom dom g ( ( x g y ) = y /\ ( y g x ) = y ) <-> E. x e. X A. y e. X ( ( x G y ) = y /\ ( y G x ) = y ) ) ) |
| 12 | df-exid | |- ExId = { g | E. x e. dom dom g A. y e. dom dom g ( ( x g y ) = y /\ ( y g x ) = y ) } |
|
| 13 | 11 12 | elab2g | |- ( G e. A -> ( G e. ExId <-> E. x e. X A. y e. X ( ( x G y ) = y /\ ( y G x ) = y ) ) ) |