This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A device to add an identity element to various sorts of internal operations. (Contributed by FL, 2-Nov-2009) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-exid | ⊢ ExId = { 𝑔 ∣ ∃ 𝑥 ∈ dom dom 𝑔 ∀ 𝑦 ∈ dom dom 𝑔 ( ( 𝑥 𝑔 𝑦 ) = 𝑦 ∧ ( 𝑦 𝑔 𝑥 ) = 𝑦 ) } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cexid | ⊢ ExId | |
| 1 | vg | ⊢ 𝑔 | |
| 2 | vx | ⊢ 𝑥 | |
| 3 | 1 | cv | ⊢ 𝑔 |
| 4 | 3 | cdm | ⊢ dom 𝑔 |
| 5 | 4 | cdm | ⊢ dom dom 𝑔 |
| 6 | vy | ⊢ 𝑦 | |
| 7 | 2 | cv | ⊢ 𝑥 |
| 8 | 6 | cv | ⊢ 𝑦 |
| 9 | 7 8 3 | co | ⊢ ( 𝑥 𝑔 𝑦 ) |
| 10 | 9 8 | wceq | ⊢ ( 𝑥 𝑔 𝑦 ) = 𝑦 |
| 11 | 8 7 3 | co | ⊢ ( 𝑦 𝑔 𝑥 ) |
| 12 | 11 8 | wceq | ⊢ ( 𝑦 𝑔 𝑥 ) = 𝑦 |
| 13 | 10 12 | wa | ⊢ ( ( 𝑥 𝑔 𝑦 ) = 𝑦 ∧ ( 𝑦 𝑔 𝑥 ) = 𝑦 ) |
| 14 | 13 6 5 | wral | ⊢ ∀ 𝑦 ∈ dom dom 𝑔 ( ( 𝑥 𝑔 𝑦 ) = 𝑦 ∧ ( 𝑦 𝑔 𝑥 ) = 𝑦 ) |
| 15 | 14 2 5 | wrex | ⊢ ∃ 𝑥 ∈ dom dom 𝑔 ∀ 𝑦 ∈ dom dom 𝑔 ( ( 𝑥 𝑔 𝑦 ) = 𝑦 ∧ ( 𝑦 𝑔 𝑥 ) = 𝑦 ) |
| 16 | 15 1 | cab | ⊢ { 𝑔 ∣ ∃ 𝑥 ∈ dom dom 𝑔 ∀ 𝑦 ∈ dom dom 𝑔 ( ( 𝑥 𝑔 𝑦 ) = 𝑦 ∧ ( 𝑦 𝑔 𝑥 ) = 𝑦 ) } |
| 17 | 0 16 | wceq | ⊢ ExId = { 𝑔 ∣ ∃ 𝑥 ∈ dom dom 𝑔 ∀ 𝑦 ∈ dom dom 𝑔 ( ( 𝑥 𝑔 𝑦 ) = 𝑦 ∧ ( 𝑦 𝑔 𝑥 ) = 𝑦 ) } |