This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Conditions for a function (sequence of hyperedges) to be an s-walk of edges. (Contributed by AV, 4-Jan-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ewlksfval.i | ⊢ 𝐼 = ( iEdg ‘ 𝐺 ) | |
| Assertion | isewlk | ⊢ ( ( 𝐺 ∈ 𝑊 ∧ 𝑆 ∈ ℕ0* ∧ 𝐹 ∈ 𝑈 ) → ( 𝐹 ∈ ( 𝐺 EdgWalks 𝑆 ) ↔ ( 𝐹 ∈ Word dom 𝐼 ∧ ∀ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) 𝑆 ≤ ( ♯ ‘ ( ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ∩ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ewlksfval.i | ⊢ 𝐼 = ( iEdg ‘ 𝐺 ) | |
| 2 | 1 | ewlksfval | ⊢ ( ( 𝐺 ∈ 𝑊 ∧ 𝑆 ∈ ℕ0* ) → ( 𝐺 EdgWalks 𝑆 ) = { 𝑓 ∣ ( 𝑓 ∈ Word dom 𝐼 ∧ ∀ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝑓 ) ) 𝑆 ≤ ( ♯ ‘ ( ( 𝐼 ‘ ( 𝑓 ‘ ( 𝑘 − 1 ) ) ) ∩ ( 𝐼 ‘ ( 𝑓 ‘ 𝑘 ) ) ) ) ) } ) |
| 3 | 2 | 3adant3 | ⊢ ( ( 𝐺 ∈ 𝑊 ∧ 𝑆 ∈ ℕ0* ∧ 𝐹 ∈ 𝑈 ) → ( 𝐺 EdgWalks 𝑆 ) = { 𝑓 ∣ ( 𝑓 ∈ Word dom 𝐼 ∧ ∀ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝑓 ) ) 𝑆 ≤ ( ♯ ‘ ( ( 𝐼 ‘ ( 𝑓 ‘ ( 𝑘 − 1 ) ) ) ∩ ( 𝐼 ‘ ( 𝑓 ‘ 𝑘 ) ) ) ) ) } ) |
| 4 | 3 | eleq2d | ⊢ ( ( 𝐺 ∈ 𝑊 ∧ 𝑆 ∈ ℕ0* ∧ 𝐹 ∈ 𝑈 ) → ( 𝐹 ∈ ( 𝐺 EdgWalks 𝑆 ) ↔ 𝐹 ∈ { 𝑓 ∣ ( 𝑓 ∈ Word dom 𝐼 ∧ ∀ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝑓 ) ) 𝑆 ≤ ( ♯ ‘ ( ( 𝐼 ‘ ( 𝑓 ‘ ( 𝑘 − 1 ) ) ) ∩ ( 𝐼 ‘ ( 𝑓 ‘ 𝑘 ) ) ) ) ) } ) ) |
| 5 | eleq1 | ⊢ ( 𝑓 = 𝐹 → ( 𝑓 ∈ Word dom 𝐼 ↔ 𝐹 ∈ Word dom 𝐼 ) ) | |
| 6 | fveq2 | ⊢ ( 𝑓 = 𝐹 → ( ♯ ‘ 𝑓 ) = ( ♯ ‘ 𝐹 ) ) | |
| 7 | 6 | oveq2d | ⊢ ( 𝑓 = 𝐹 → ( 1 ..^ ( ♯ ‘ 𝑓 ) ) = ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) |
| 8 | fveq1 | ⊢ ( 𝑓 = 𝐹 → ( 𝑓 ‘ ( 𝑘 − 1 ) ) = ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) | |
| 9 | 8 | fveq2d | ⊢ ( 𝑓 = 𝐹 → ( 𝐼 ‘ ( 𝑓 ‘ ( 𝑘 − 1 ) ) ) = ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ) |
| 10 | fveq1 | ⊢ ( 𝑓 = 𝐹 → ( 𝑓 ‘ 𝑘 ) = ( 𝐹 ‘ 𝑘 ) ) | |
| 11 | 10 | fveq2d | ⊢ ( 𝑓 = 𝐹 → ( 𝐼 ‘ ( 𝑓 ‘ 𝑘 ) ) = ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) |
| 12 | 9 11 | ineq12d | ⊢ ( 𝑓 = 𝐹 → ( ( 𝐼 ‘ ( 𝑓 ‘ ( 𝑘 − 1 ) ) ) ∩ ( 𝐼 ‘ ( 𝑓 ‘ 𝑘 ) ) ) = ( ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ∩ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) |
| 13 | 12 | fveq2d | ⊢ ( 𝑓 = 𝐹 → ( ♯ ‘ ( ( 𝐼 ‘ ( 𝑓 ‘ ( 𝑘 − 1 ) ) ) ∩ ( 𝐼 ‘ ( 𝑓 ‘ 𝑘 ) ) ) ) = ( ♯ ‘ ( ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ∩ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) ) |
| 14 | 13 | breq2d | ⊢ ( 𝑓 = 𝐹 → ( 𝑆 ≤ ( ♯ ‘ ( ( 𝐼 ‘ ( 𝑓 ‘ ( 𝑘 − 1 ) ) ) ∩ ( 𝐼 ‘ ( 𝑓 ‘ 𝑘 ) ) ) ) ↔ 𝑆 ≤ ( ♯ ‘ ( ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ∩ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) ) ) |
| 15 | 7 14 | raleqbidv | ⊢ ( 𝑓 = 𝐹 → ( ∀ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝑓 ) ) 𝑆 ≤ ( ♯ ‘ ( ( 𝐼 ‘ ( 𝑓 ‘ ( 𝑘 − 1 ) ) ) ∩ ( 𝐼 ‘ ( 𝑓 ‘ 𝑘 ) ) ) ) ↔ ∀ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) 𝑆 ≤ ( ♯ ‘ ( ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ∩ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) ) ) |
| 16 | 5 15 | anbi12d | ⊢ ( 𝑓 = 𝐹 → ( ( 𝑓 ∈ Word dom 𝐼 ∧ ∀ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝑓 ) ) 𝑆 ≤ ( ♯ ‘ ( ( 𝐼 ‘ ( 𝑓 ‘ ( 𝑘 − 1 ) ) ) ∩ ( 𝐼 ‘ ( 𝑓 ‘ 𝑘 ) ) ) ) ) ↔ ( 𝐹 ∈ Word dom 𝐼 ∧ ∀ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) 𝑆 ≤ ( ♯ ‘ ( ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ∩ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) ) ) ) |
| 17 | 16 | elabg | ⊢ ( 𝐹 ∈ 𝑈 → ( 𝐹 ∈ { 𝑓 ∣ ( 𝑓 ∈ Word dom 𝐼 ∧ ∀ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝑓 ) ) 𝑆 ≤ ( ♯ ‘ ( ( 𝐼 ‘ ( 𝑓 ‘ ( 𝑘 − 1 ) ) ) ∩ ( 𝐼 ‘ ( 𝑓 ‘ 𝑘 ) ) ) ) ) } ↔ ( 𝐹 ∈ Word dom 𝐼 ∧ ∀ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) 𝑆 ≤ ( ♯ ‘ ( ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ∩ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) ) ) ) |
| 18 | 17 | 3ad2ant3 | ⊢ ( ( 𝐺 ∈ 𝑊 ∧ 𝑆 ∈ ℕ0* ∧ 𝐹 ∈ 𝑈 ) → ( 𝐹 ∈ { 𝑓 ∣ ( 𝑓 ∈ Word dom 𝐼 ∧ ∀ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝑓 ) ) 𝑆 ≤ ( ♯ ‘ ( ( 𝐼 ‘ ( 𝑓 ‘ ( 𝑘 − 1 ) ) ) ∩ ( 𝐼 ‘ ( 𝑓 ‘ 𝑘 ) ) ) ) ) } ↔ ( 𝐹 ∈ Word dom 𝐼 ∧ ∀ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) 𝑆 ≤ ( ♯ ‘ ( ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ∩ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) ) ) ) |
| 19 | 4 18 | bitrd | ⊢ ( ( 𝐺 ∈ 𝑊 ∧ 𝑆 ∈ ℕ0* ∧ 𝐹 ∈ 𝑈 ) → ( 𝐹 ∈ ( 𝐺 EdgWalks 𝑆 ) ↔ ( 𝐹 ∈ Word dom 𝐼 ∧ ∀ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) 𝑆 ≤ ( ♯ ‘ ( ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ∩ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) ) ) ) |