This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The set of s-walks of edges (in a hypergraph). (Contributed by AV, 4-Jan-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ewlksfval.i | ⊢ 𝐼 = ( iEdg ‘ 𝐺 ) | |
| Assertion | ewlksfval | ⊢ ( ( 𝐺 ∈ 𝑊 ∧ 𝑆 ∈ ℕ0* ) → ( 𝐺 EdgWalks 𝑆 ) = { 𝑓 ∣ ( 𝑓 ∈ Word dom 𝐼 ∧ ∀ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝑓 ) ) 𝑆 ≤ ( ♯ ‘ ( ( 𝐼 ‘ ( 𝑓 ‘ ( 𝑘 − 1 ) ) ) ∩ ( 𝐼 ‘ ( 𝑓 ‘ 𝑘 ) ) ) ) ) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ewlksfval.i | ⊢ 𝐼 = ( iEdg ‘ 𝐺 ) | |
| 2 | df-ewlks | ⊢ EdgWalks = ( 𝑔 ∈ V , 𝑠 ∈ ℕ0* ↦ { 𝑓 ∣ [ ( iEdg ‘ 𝑔 ) / 𝑖 ] ( 𝑓 ∈ Word dom 𝑖 ∧ ∀ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝑓 ) ) 𝑠 ≤ ( ♯ ‘ ( ( 𝑖 ‘ ( 𝑓 ‘ ( 𝑘 − 1 ) ) ) ∩ ( 𝑖 ‘ ( 𝑓 ‘ 𝑘 ) ) ) ) ) } ) | |
| 3 | 2 | a1i | ⊢ ( ( 𝐺 ∈ 𝑊 ∧ 𝑆 ∈ ℕ0* ) → EdgWalks = ( 𝑔 ∈ V , 𝑠 ∈ ℕ0* ↦ { 𝑓 ∣ [ ( iEdg ‘ 𝑔 ) / 𝑖 ] ( 𝑓 ∈ Word dom 𝑖 ∧ ∀ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝑓 ) ) 𝑠 ≤ ( ♯ ‘ ( ( 𝑖 ‘ ( 𝑓 ‘ ( 𝑘 − 1 ) ) ) ∩ ( 𝑖 ‘ ( 𝑓 ‘ 𝑘 ) ) ) ) ) } ) ) |
| 4 | fvexd | ⊢ ( ( 𝑔 = 𝐺 ∧ 𝑠 = 𝑆 ) → ( iEdg ‘ 𝑔 ) ∈ V ) | |
| 5 | simpr | ⊢ ( ( ( 𝑔 = 𝐺 ∧ 𝑠 = 𝑆 ) ∧ 𝑖 = ( iEdg ‘ 𝑔 ) ) → 𝑖 = ( iEdg ‘ 𝑔 ) ) | |
| 6 | fveq2 | ⊢ ( 𝑔 = 𝐺 → ( iEdg ‘ 𝑔 ) = ( iEdg ‘ 𝐺 ) ) | |
| 7 | 6 | adantr | ⊢ ( ( 𝑔 = 𝐺 ∧ 𝑠 = 𝑆 ) → ( iEdg ‘ 𝑔 ) = ( iEdg ‘ 𝐺 ) ) |
| 8 | 7 | adantr | ⊢ ( ( ( 𝑔 = 𝐺 ∧ 𝑠 = 𝑆 ) ∧ 𝑖 = ( iEdg ‘ 𝑔 ) ) → ( iEdg ‘ 𝑔 ) = ( iEdg ‘ 𝐺 ) ) |
| 9 | 5 8 | eqtrd | ⊢ ( ( ( 𝑔 = 𝐺 ∧ 𝑠 = 𝑆 ) ∧ 𝑖 = ( iEdg ‘ 𝑔 ) ) → 𝑖 = ( iEdg ‘ 𝐺 ) ) |
| 10 | 9 | dmeqd | ⊢ ( ( ( 𝑔 = 𝐺 ∧ 𝑠 = 𝑆 ) ∧ 𝑖 = ( iEdg ‘ 𝑔 ) ) → dom 𝑖 = dom ( iEdg ‘ 𝐺 ) ) |
| 11 | wrdeq | ⊢ ( dom 𝑖 = dom ( iEdg ‘ 𝐺 ) → Word dom 𝑖 = Word dom ( iEdg ‘ 𝐺 ) ) | |
| 12 | 10 11 | syl | ⊢ ( ( ( 𝑔 = 𝐺 ∧ 𝑠 = 𝑆 ) ∧ 𝑖 = ( iEdg ‘ 𝑔 ) ) → Word dom 𝑖 = Word dom ( iEdg ‘ 𝐺 ) ) |
| 13 | 12 | eleq2d | ⊢ ( ( ( 𝑔 = 𝐺 ∧ 𝑠 = 𝑆 ) ∧ 𝑖 = ( iEdg ‘ 𝑔 ) ) → ( 𝑓 ∈ Word dom 𝑖 ↔ 𝑓 ∈ Word dom ( iEdg ‘ 𝐺 ) ) ) |
| 14 | simpr | ⊢ ( ( 𝑔 = 𝐺 ∧ 𝑠 = 𝑆 ) → 𝑠 = 𝑆 ) | |
| 15 | 14 | adantr | ⊢ ( ( ( 𝑔 = 𝐺 ∧ 𝑠 = 𝑆 ) ∧ 𝑖 = ( iEdg ‘ 𝑔 ) ) → 𝑠 = 𝑆 ) |
| 16 | 9 | fveq1d | ⊢ ( ( ( 𝑔 = 𝐺 ∧ 𝑠 = 𝑆 ) ∧ 𝑖 = ( iEdg ‘ 𝑔 ) ) → ( 𝑖 ‘ ( 𝑓 ‘ ( 𝑘 − 1 ) ) ) = ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ ( 𝑘 − 1 ) ) ) ) |
| 17 | 9 | fveq1d | ⊢ ( ( ( 𝑔 = 𝐺 ∧ 𝑠 = 𝑆 ) ∧ 𝑖 = ( iEdg ‘ 𝑔 ) ) → ( 𝑖 ‘ ( 𝑓 ‘ 𝑘 ) ) = ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 𝑘 ) ) ) |
| 18 | 16 17 | ineq12d | ⊢ ( ( ( 𝑔 = 𝐺 ∧ 𝑠 = 𝑆 ) ∧ 𝑖 = ( iEdg ‘ 𝑔 ) ) → ( ( 𝑖 ‘ ( 𝑓 ‘ ( 𝑘 − 1 ) ) ) ∩ ( 𝑖 ‘ ( 𝑓 ‘ 𝑘 ) ) ) = ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ ( 𝑘 − 1 ) ) ) ∩ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 𝑘 ) ) ) ) |
| 19 | 18 | fveq2d | ⊢ ( ( ( 𝑔 = 𝐺 ∧ 𝑠 = 𝑆 ) ∧ 𝑖 = ( iEdg ‘ 𝑔 ) ) → ( ♯ ‘ ( ( 𝑖 ‘ ( 𝑓 ‘ ( 𝑘 − 1 ) ) ) ∩ ( 𝑖 ‘ ( 𝑓 ‘ 𝑘 ) ) ) ) = ( ♯ ‘ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ ( 𝑘 − 1 ) ) ) ∩ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 𝑘 ) ) ) ) ) |
| 20 | 15 19 | breq12d | ⊢ ( ( ( 𝑔 = 𝐺 ∧ 𝑠 = 𝑆 ) ∧ 𝑖 = ( iEdg ‘ 𝑔 ) ) → ( 𝑠 ≤ ( ♯ ‘ ( ( 𝑖 ‘ ( 𝑓 ‘ ( 𝑘 − 1 ) ) ) ∩ ( 𝑖 ‘ ( 𝑓 ‘ 𝑘 ) ) ) ) ↔ 𝑆 ≤ ( ♯ ‘ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ ( 𝑘 − 1 ) ) ) ∩ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 𝑘 ) ) ) ) ) ) |
| 21 | 20 | ralbidv | ⊢ ( ( ( 𝑔 = 𝐺 ∧ 𝑠 = 𝑆 ) ∧ 𝑖 = ( iEdg ‘ 𝑔 ) ) → ( ∀ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝑓 ) ) 𝑠 ≤ ( ♯ ‘ ( ( 𝑖 ‘ ( 𝑓 ‘ ( 𝑘 − 1 ) ) ) ∩ ( 𝑖 ‘ ( 𝑓 ‘ 𝑘 ) ) ) ) ↔ ∀ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝑓 ) ) 𝑆 ≤ ( ♯ ‘ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ ( 𝑘 − 1 ) ) ) ∩ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 𝑘 ) ) ) ) ) ) |
| 22 | 13 21 | anbi12d | ⊢ ( ( ( 𝑔 = 𝐺 ∧ 𝑠 = 𝑆 ) ∧ 𝑖 = ( iEdg ‘ 𝑔 ) ) → ( ( 𝑓 ∈ Word dom 𝑖 ∧ ∀ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝑓 ) ) 𝑠 ≤ ( ♯ ‘ ( ( 𝑖 ‘ ( 𝑓 ‘ ( 𝑘 − 1 ) ) ) ∩ ( 𝑖 ‘ ( 𝑓 ‘ 𝑘 ) ) ) ) ) ↔ ( 𝑓 ∈ Word dom ( iEdg ‘ 𝐺 ) ∧ ∀ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝑓 ) ) 𝑆 ≤ ( ♯ ‘ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ ( 𝑘 − 1 ) ) ) ∩ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 𝑘 ) ) ) ) ) ) ) |
| 23 | 4 22 | sbcied | ⊢ ( ( 𝑔 = 𝐺 ∧ 𝑠 = 𝑆 ) → ( [ ( iEdg ‘ 𝑔 ) / 𝑖 ] ( 𝑓 ∈ Word dom 𝑖 ∧ ∀ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝑓 ) ) 𝑠 ≤ ( ♯ ‘ ( ( 𝑖 ‘ ( 𝑓 ‘ ( 𝑘 − 1 ) ) ) ∩ ( 𝑖 ‘ ( 𝑓 ‘ 𝑘 ) ) ) ) ) ↔ ( 𝑓 ∈ Word dom ( iEdg ‘ 𝐺 ) ∧ ∀ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝑓 ) ) 𝑆 ≤ ( ♯ ‘ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ ( 𝑘 − 1 ) ) ) ∩ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 𝑘 ) ) ) ) ) ) ) |
| 24 | 23 | abbidv | ⊢ ( ( 𝑔 = 𝐺 ∧ 𝑠 = 𝑆 ) → { 𝑓 ∣ [ ( iEdg ‘ 𝑔 ) / 𝑖 ] ( 𝑓 ∈ Word dom 𝑖 ∧ ∀ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝑓 ) ) 𝑠 ≤ ( ♯ ‘ ( ( 𝑖 ‘ ( 𝑓 ‘ ( 𝑘 − 1 ) ) ) ∩ ( 𝑖 ‘ ( 𝑓 ‘ 𝑘 ) ) ) ) ) } = { 𝑓 ∣ ( 𝑓 ∈ Word dom ( iEdg ‘ 𝐺 ) ∧ ∀ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝑓 ) ) 𝑆 ≤ ( ♯ ‘ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ ( 𝑘 − 1 ) ) ) ∩ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 𝑘 ) ) ) ) ) } ) |
| 25 | 24 | adantl | ⊢ ( ( ( 𝐺 ∈ 𝑊 ∧ 𝑆 ∈ ℕ0* ) ∧ ( 𝑔 = 𝐺 ∧ 𝑠 = 𝑆 ) ) → { 𝑓 ∣ [ ( iEdg ‘ 𝑔 ) / 𝑖 ] ( 𝑓 ∈ Word dom 𝑖 ∧ ∀ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝑓 ) ) 𝑠 ≤ ( ♯ ‘ ( ( 𝑖 ‘ ( 𝑓 ‘ ( 𝑘 − 1 ) ) ) ∩ ( 𝑖 ‘ ( 𝑓 ‘ 𝑘 ) ) ) ) ) } = { 𝑓 ∣ ( 𝑓 ∈ Word dom ( iEdg ‘ 𝐺 ) ∧ ∀ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝑓 ) ) 𝑆 ≤ ( ♯ ‘ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ ( 𝑘 − 1 ) ) ) ∩ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 𝑘 ) ) ) ) ) } ) |
| 26 | elex | ⊢ ( 𝐺 ∈ 𝑊 → 𝐺 ∈ V ) | |
| 27 | 26 | adantr | ⊢ ( ( 𝐺 ∈ 𝑊 ∧ 𝑆 ∈ ℕ0* ) → 𝐺 ∈ V ) |
| 28 | simpr | ⊢ ( ( 𝐺 ∈ 𝑊 ∧ 𝑆 ∈ ℕ0* ) → 𝑆 ∈ ℕ0* ) | |
| 29 | df-rab | ⊢ { 𝑓 ∈ Word dom ( iEdg ‘ 𝐺 ) ∣ ∀ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝑓 ) ) 𝑆 ≤ ( ♯ ‘ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ ( 𝑘 − 1 ) ) ) ∩ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 𝑘 ) ) ) ) } = { 𝑓 ∣ ( 𝑓 ∈ Word dom ( iEdg ‘ 𝐺 ) ∧ ∀ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝑓 ) ) 𝑆 ≤ ( ♯ ‘ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ ( 𝑘 − 1 ) ) ) ∩ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 𝑘 ) ) ) ) ) } | |
| 30 | fvex | ⊢ ( iEdg ‘ 𝐺 ) ∈ V | |
| 31 | 30 | dmex | ⊢ dom ( iEdg ‘ 𝐺 ) ∈ V |
| 32 | 31 | wrdexi | ⊢ Word dom ( iEdg ‘ 𝐺 ) ∈ V |
| 33 | 32 | rabex | ⊢ { 𝑓 ∈ Word dom ( iEdg ‘ 𝐺 ) ∣ ∀ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝑓 ) ) 𝑆 ≤ ( ♯ ‘ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ ( 𝑘 − 1 ) ) ) ∩ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 𝑘 ) ) ) ) } ∈ V |
| 34 | 33 | a1i | ⊢ ( ( 𝐺 ∈ 𝑊 ∧ 𝑆 ∈ ℕ0* ) → { 𝑓 ∈ Word dom ( iEdg ‘ 𝐺 ) ∣ ∀ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝑓 ) ) 𝑆 ≤ ( ♯ ‘ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ ( 𝑘 − 1 ) ) ) ∩ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 𝑘 ) ) ) ) } ∈ V ) |
| 35 | 29 34 | eqeltrrid | ⊢ ( ( 𝐺 ∈ 𝑊 ∧ 𝑆 ∈ ℕ0* ) → { 𝑓 ∣ ( 𝑓 ∈ Word dom ( iEdg ‘ 𝐺 ) ∧ ∀ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝑓 ) ) 𝑆 ≤ ( ♯ ‘ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ ( 𝑘 − 1 ) ) ) ∩ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 𝑘 ) ) ) ) ) } ∈ V ) |
| 36 | 3 25 27 28 35 | ovmpod | ⊢ ( ( 𝐺 ∈ 𝑊 ∧ 𝑆 ∈ ℕ0* ) → ( 𝐺 EdgWalks 𝑆 ) = { 𝑓 ∣ ( 𝑓 ∈ Word dom ( iEdg ‘ 𝐺 ) ∧ ∀ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝑓 ) ) 𝑆 ≤ ( ♯ ‘ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ ( 𝑘 − 1 ) ) ) ∩ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 𝑘 ) ) ) ) ) } ) |
| 37 | 1 | eqcomi | ⊢ ( iEdg ‘ 𝐺 ) = 𝐼 |
| 38 | 37 | a1i | ⊢ ( ( 𝐺 ∈ 𝑊 ∧ 𝑆 ∈ ℕ0* ) → ( iEdg ‘ 𝐺 ) = 𝐼 ) |
| 39 | 38 | dmeqd | ⊢ ( ( 𝐺 ∈ 𝑊 ∧ 𝑆 ∈ ℕ0* ) → dom ( iEdg ‘ 𝐺 ) = dom 𝐼 ) |
| 40 | wrdeq | ⊢ ( dom ( iEdg ‘ 𝐺 ) = dom 𝐼 → Word dom ( iEdg ‘ 𝐺 ) = Word dom 𝐼 ) | |
| 41 | 39 40 | syl | ⊢ ( ( 𝐺 ∈ 𝑊 ∧ 𝑆 ∈ ℕ0* ) → Word dom ( iEdg ‘ 𝐺 ) = Word dom 𝐼 ) |
| 42 | 41 | eleq2d | ⊢ ( ( 𝐺 ∈ 𝑊 ∧ 𝑆 ∈ ℕ0* ) → ( 𝑓 ∈ Word dom ( iEdg ‘ 𝐺 ) ↔ 𝑓 ∈ Word dom 𝐼 ) ) |
| 43 | 38 | fveq1d | ⊢ ( ( 𝐺 ∈ 𝑊 ∧ 𝑆 ∈ ℕ0* ) → ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ ( 𝑘 − 1 ) ) ) = ( 𝐼 ‘ ( 𝑓 ‘ ( 𝑘 − 1 ) ) ) ) |
| 44 | 38 | fveq1d | ⊢ ( ( 𝐺 ∈ 𝑊 ∧ 𝑆 ∈ ℕ0* ) → ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 𝑘 ) ) = ( 𝐼 ‘ ( 𝑓 ‘ 𝑘 ) ) ) |
| 45 | 43 44 | ineq12d | ⊢ ( ( 𝐺 ∈ 𝑊 ∧ 𝑆 ∈ ℕ0* ) → ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ ( 𝑘 − 1 ) ) ) ∩ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 𝑘 ) ) ) = ( ( 𝐼 ‘ ( 𝑓 ‘ ( 𝑘 − 1 ) ) ) ∩ ( 𝐼 ‘ ( 𝑓 ‘ 𝑘 ) ) ) ) |
| 46 | 45 | fveq2d | ⊢ ( ( 𝐺 ∈ 𝑊 ∧ 𝑆 ∈ ℕ0* ) → ( ♯ ‘ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ ( 𝑘 − 1 ) ) ) ∩ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 𝑘 ) ) ) ) = ( ♯ ‘ ( ( 𝐼 ‘ ( 𝑓 ‘ ( 𝑘 − 1 ) ) ) ∩ ( 𝐼 ‘ ( 𝑓 ‘ 𝑘 ) ) ) ) ) |
| 47 | 46 | breq2d | ⊢ ( ( 𝐺 ∈ 𝑊 ∧ 𝑆 ∈ ℕ0* ) → ( 𝑆 ≤ ( ♯ ‘ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ ( 𝑘 − 1 ) ) ) ∩ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 𝑘 ) ) ) ) ↔ 𝑆 ≤ ( ♯ ‘ ( ( 𝐼 ‘ ( 𝑓 ‘ ( 𝑘 − 1 ) ) ) ∩ ( 𝐼 ‘ ( 𝑓 ‘ 𝑘 ) ) ) ) ) ) |
| 48 | 47 | ralbidv | ⊢ ( ( 𝐺 ∈ 𝑊 ∧ 𝑆 ∈ ℕ0* ) → ( ∀ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝑓 ) ) 𝑆 ≤ ( ♯ ‘ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ ( 𝑘 − 1 ) ) ) ∩ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 𝑘 ) ) ) ) ↔ ∀ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝑓 ) ) 𝑆 ≤ ( ♯ ‘ ( ( 𝐼 ‘ ( 𝑓 ‘ ( 𝑘 − 1 ) ) ) ∩ ( 𝐼 ‘ ( 𝑓 ‘ 𝑘 ) ) ) ) ) ) |
| 49 | 42 48 | anbi12d | ⊢ ( ( 𝐺 ∈ 𝑊 ∧ 𝑆 ∈ ℕ0* ) → ( ( 𝑓 ∈ Word dom ( iEdg ‘ 𝐺 ) ∧ ∀ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝑓 ) ) 𝑆 ≤ ( ♯ ‘ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ ( 𝑘 − 1 ) ) ) ∩ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 𝑘 ) ) ) ) ) ↔ ( 𝑓 ∈ Word dom 𝐼 ∧ ∀ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝑓 ) ) 𝑆 ≤ ( ♯ ‘ ( ( 𝐼 ‘ ( 𝑓 ‘ ( 𝑘 − 1 ) ) ) ∩ ( 𝐼 ‘ ( 𝑓 ‘ 𝑘 ) ) ) ) ) ) ) |
| 50 | 49 | abbidv | ⊢ ( ( 𝐺 ∈ 𝑊 ∧ 𝑆 ∈ ℕ0* ) → { 𝑓 ∣ ( 𝑓 ∈ Word dom ( iEdg ‘ 𝐺 ) ∧ ∀ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝑓 ) ) 𝑆 ≤ ( ♯ ‘ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ ( 𝑘 − 1 ) ) ) ∩ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 𝑘 ) ) ) ) ) } = { 𝑓 ∣ ( 𝑓 ∈ Word dom 𝐼 ∧ ∀ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝑓 ) ) 𝑆 ≤ ( ♯ ‘ ( ( 𝐼 ‘ ( 𝑓 ‘ ( 𝑘 − 1 ) ) ) ∩ ( 𝐼 ‘ ( 𝑓 ‘ 𝑘 ) ) ) ) ) } ) |
| 51 | 36 50 | eqtrd | ⊢ ( ( 𝐺 ∈ 𝑊 ∧ 𝑆 ∈ ℕ0* ) → ( 𝐺 EdgWalks 𝑆 ) = { 𝑓 ∣ ( 𝑓 ∈ Word dom 𝐼 ∧ ∀ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝑓 ) ) 𝑆 ≤ ( ♯ ‘ ( ( 𝐼 ‘ ( 𝑓 ‘ ( 𝑘 − 1 ) ) ) ∩ ( 𝐼 ‘ ( 𝑓 ‘ 𝑘 ) ) ) ) ) } ) |