This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Conditions for a function (sequence of hyperedges) to be an s-walk of edges. (Contributed by AV, 4-Jan-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ewlksfval.i | |- I = ( iEdg ` G ) |
|
| Assertion | isewlk | |- ( ( G e. W /\ S e. NN0* /\ F e. U ) -> ( F e. ( G EdgWalks S ) <-> ( F e. Word dom I /\ A. k e. ( 1 ..^ ( # ` F ) ) S <_ ( # ` ( ( I ` ( F ` ( k - 1 ) ) ) i^i ( I ` ( F ` k ) ) ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ewlksfval.i | |- I = ( iEdg ` G ) |
|
| 2 | 1 | ewlksfval | |- ( ( G e. W /\ S e. NN0* ) -> ( G EdgWalks S ) = { f | ( f e. Word dom I /\ A. k e. ( 1 ..^ ( # ` f ) ) S <_ ( # ` ( ( I ` ( f ` ( k - 1 ) ) ) i^i ( I ` ( f ` k ) ) ) ) ) } ) |
| 3 | 2 | 3adant3 | |- ( ( G e. W /\ S e. NN0* /\ F e. U ) -> ( G EdgWalks S ) = { f | ( f e. Word dom I /\ A. k e. ( 1 ..^ ( # ` f ) ) S <_ ( # ` ( ( I ` ( f ` ( k - 1 ) ) ) i^i ( I ` ( f ` k ) ) ) ) ) } ) |
| 4 | 3 | eleq2d | |- ( ( G e. W /\ S e. NN0* /\ F e. U ) -> ( F e. ( G EdgWalks S ) <-> F e. { f | ( f e. Word dom I /\ A. k e. ( 1 ..^ ( # ` f ) ) S <_ ( # ` ( ( I ` ( f ` ( k - 1 ) ) ) i^i ( I ` ( f ` k ) ) ) ) ) } ) ) |
| 5 | eleq1 | |- ( f = F -> ( f e. Word dom I <-> F e. Word dom I ) ) |
|
| 6 | fveq2 | |- ( f = F -> ( # ` f ) = ( # ` F ) ) |
|
| 7 | 6 | oveq2d | |- ( f = F -> ( 1 ..^ ( # ` f ) ) = ( 1 ..^ ( # ` F ) ) ) |
| 8 | fveq1 | |- ( f = F -> ( f ` ( k - 1 ) ) = ( F ` ( k - 1 ) ) ) |
|
| 9 | 8 | fveq2d | |- ( f = F -> ( I ` ( f ` ( k - 1 ) ) ) = ( I ` ( F ` ( k - 1 ) ) ) ) |
| 10 | fveq1 | |- ( f = F -> ( f ` k ) = ( F ` k ) ) |
|
| 11 | 10 | fveq2d | |- ( f = F -> ( I ` ( f ` k ) ) = ( I ` ( F ` k ) ) ) |
| 12 | 9 11 | ineq12d | |- ( f = F -> ( ( I ` ( f ` ( k - 1 ) ) ) i^i ( I ` ( f ` k ) ) ) = ( ( I ` ( F ` ( k - 1 ) ) ) i^i ( I ` ( F ` k ) ) ) ) |
| 13 | 12 | fveq2d | |- ( f = F -> ( # ` ( ( I ` ( f ` ( k - 1 ) ) ) i^i ( I ` ( f ` k ) ) ) ) = ( # ` ( ( I ` ( F ` ( k - 1 ) ) ) i^i ( I ` ( F ` k ) ) ) ) ) |
| 14 | 13 | breq2d | |- ( f = F -> ( S <_ ( # ` ( ( I ` ( f ` ( k - 1 ) ) ) i^i ( I ` ( f ` k ) ) ) ) <-> S <_ ( # ` ( ( I ` ( F ` ( k - 1 ) ) ) i^i ( I ` ( F ` k ) ) ) ) ) ) |
| 15 | 7 14 | raleqbidv | |- ( f = F -> ( A. k e. ( 1 ..^ ( # ` f ) ) S <_ ( # ` ( ( I ` ( f ` ( k - 1 ) ) ) i^i ( I ` ( f ` k ) ) ) ) <-> A. k e. ( 1 ..^ ( # ` F ) ) S <_ ( # ` ( ( I ` ( F ` ( k - 1 ) ) ) i^i ( I ` ( F ` k ) ) ) ) ) ) |
| 16 | 5 15 | anbi12d | |- ( f = F -> ( ( f e. Word dom I /\ A. k e. ( 1 ..^ ( # ` f ) ) S <_ ( # ` ( ( I ` ( f ` ( k - 1 ) ) ) i^i ( I ` ( f ` k ) ) ) ) ) <-> ( F e. Word dom I /\ A. k e. ( 1 ..^ ( # ` F ) ) S <_ ( # ` ( ( I ` ( F ` ( k - 1 ) ) ) i^i ( I ` ( F ` k ) ) ) ) ) ) ) |
| 17 | 16 | elabg | |- ( F e. U -> ( F e. { f | ( f e. Word dom I /\ A. k e. ( 1 ..^ ( # ` f ) ) S <_ ( # ` ( ( I ` ( f ` ( k - 1 ) ) ) i^i ( I ` ( f ` k ) ) ) ) ) } <-> ( F e. Word dom I /\ A. k e. ( 1 ..^ ( # ` F ) ) S <_ ( # ` ( ( I ` ( F ` ( k - 1 ) ) ) i^i ( I ` ( F ` k ) ) ) ) ) ) ) |
| 18 | 17 | 3ad2ant3 | |- ( ( G e. W /\ S e. NN0* /\ F e. U ) -> ( F e. { f | ( f e. Word dom I /\ A. k e. ( 1 ..^ ( # ` f ) ) S <_ ( # ` ( ( I ` ( f ` ( k - 1 ) ) ) i^i ( I ` ( f ` k ) ) ) ) ) } <-> ( F e. Word dom I /\ A. k e. ( 1 ..^ ( # ` F ) ) S <_ ( # ` ( ( I ` ( F ` ( k - 1 ) ) ) i^i ( I ` ( F ` k ) ) ) ) ) ) ) |
| 19 | 4 18 | bitrd | |- ( ( G e. W /\ S e. NN0* /\ F e. U ) -> ( F e. ( G EdgWalks S ) <-> ( F e. Word dom I /\ A. k e. ( 1 ..^ ( # ` F ) ) S <_ ( # ` ( ( I ` ( F ` ( k - 1 ) ) ) i^i ( I ` ( F ` k ) ) ) ) ) ) ) |