This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Write out the epimorphism property directly. (Contributed by Mario Carneiro, 2-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isepi.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | |
| isepi.h | ⊢ 𝐻 = ( Hom ‘ 𝐶 ) | ||
| isepi.o | ⊢ · = ( comp ‘ 𝐶 ) | ||
| isepi.e | ⊢ 𝐸 = ( Epi ‘ 𝐶 ) | ||
| isepi.c | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) | ||
| isepi.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | ||
| isepi.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | ||
| Assertion | isepi2 | ⊢ ( 𝜑 → ( 𝐹 ∈ ( 𝑋 𝐸 𝑌 ) ↔ ( 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) ∧ ∀ 𝑧 ∈ 𝐵 ∀ 𝑔 ∈ ( 𝑌 𝐻 𝑧 ) ∀ ℎ ∈ ( 𝑌 𝐻 𝑧 ) ( ( 𝑔 ( 〈 𝑋 , 𝑌 〉 · 𝑧 ) 𝐹 ) = ( ℎ ( 〈 𝑋 , 𝑌 〉 · 𝑧 ) 𝐹 ) → 𝑔 = ℎ ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isepi.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | |
| 2 | isepi.h | ⊢ 𝐻 = ( Hom ‘ 𝐶 ) | |
| 3 | isepi.o | ⊢ · = ( comp ‘ 𝐶 ) | |
| 4 | isepi.e | ⊢ 𝐸 = ( Epi ‘ 𝐶 ) | |
| 5 | isepi.c | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) | |
| 6 | isepi.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | |
| 7 | isepi.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | |
| 8 | 1 2 3 4 5 6 7 | isepi | ⊢ ( 𝜑 → ( 𝐹 ∈ ( 𝑋 𝐸 𝑌 ) ↔ ( 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) ∧ ∀ 𝑧 ∈ 𝐵 Fun ◡ ( 𝑔 ∈ ( 𝑌 𝐻 𝑧 ) ↦ ( 𝑔 ( 〈 𝑋 , 𝑌 〉 · 𝑧 ) 𝐹 ) ) ) ) ) |
| 9 | 5 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑔 ∈ ( 𝑌 𝐻 𝑧 ) ) ) → 𝐶 ∈ Cat ) |
| 10 | 6 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑔 ∈ ( 𝑌 𝐻 𝑧 ) ) ) → 𝑋 ∈ 𝐵 ) |
| 11 | 7 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑔 ∈ ( 𝑌 𝐻 𝑧 ) ) ) → 𝑌 ∈ 𝐵 ) |
| 12 | simprl | ⊢ ( ( ( 𝜑 ∧ 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑔 ∈ ( 𝑌 𝐻 𝑧 ) ) ) → 𝑧 ∈ 𝐵 ) | |
| 13 | simplr | ⊢ ( ( ( 𝜑 ∧ 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑔 ∈ ( 𝑌 𝐻 𝑧 ) ) ) → 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) ) | |
| 14 | simprr | ⊢ ( ( ( 𝜑 ∧ 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑔 ∈ ( 𝑌 𝐻 𝑧 ) ) ) → 𝑔 ∈ ( 𝑌 𝐻 𝑧 ) ) | |
| 15 | 1 2 3 9 10 11 12 13 14 | catcocl | ⊢ ( ( ( 𝜑 ∧ 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑔 ∈ ( 𝑌 𝐻 𝑧 ) ) ) → ( 𝑔 ( 〈 𝑋 , 𝑌 〉 · 𝑧 ) 𝐹 ) ∈ ( 𝑋 𝐻 𝑧 ) ) |
| 16 | 15 | anassrs | ⊢ ( ( ( ( 𝜑 ∧ 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) ) ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑔 ∈ ( 𝑌 𝐻 𝑧 ) ) → ( 𝑔 ( 〈 𝑋 , 𝑌 〉 · 𝑧 ) 𝐹 ) ∈ ( 𝑋 𝐻 𝑧 ) ) |
| 17 | 16 | ralrimiva | ⊢ ( ( ( 𝜑 ∧ 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) ) ∧ 𝑧 ∈ 𝐵 ) → ∀ 𝑔 ∈ ( 𝑌 𝐻 𝑧 ) ( 𝑔 ( 〈 𝑋 , 𝑌 〉 · 𝑧 ) 𝐹 ) ∈ ( 𝑋 𝐻 𝑧 ) ) |
| 18 | eqid | ⊢ ( 𝑔 ∈ ( 𝑌 𝐻 𝑧 ) ↦ ( 𝑔 ( 〈 𝑋 , 𝑌 〉 · 𝑧 ) 𝐹 ) ) = ( 𝑔 ∈ ( 𝑌 𝐻 𝑧 ) ↦ ( 𝑔 ( 〈 𝑋 , 𝑌 〉 · 𝑧 ) 𝐹 ) ) | |
| 19 | 18 | fmpt | ⊢ ( ∀ 𝑔 ∈ ( 𝑌 𝐻 𝑧 ) ( 𝑔 ( 〈 𝑋 , 𝑌 〉 · 𝑧 ) 𝐹 ) ∈ ( 𝑋 𝐻 𝑧 ) ↔ ( 𝑔 ∈ ( 𝑌 𝐻 𝑧 ) ↦ ( 𝑔 ( 〈 𝑋 , 𝑌 〉 · 𝑧 ) 𝐹 ) ) : ( 𝑌 𝐻 𝑧 ) ⟶ ( 𝑋 𝐻 𝑧 ) ) |
| 20 | df-f1 | ⊢ ( ( 𝑔 ∈ ( 𝑌 𝐻 𝑧 ) ↦ ( 𝑔 ( 〈 𝑋 , 𝑌 〉 · 𝑧 ) 𝐹 ) ) : ( 𝑌 𝐻 𝑧 ) –1-1→ ( 𝑋 𝐻 𝑧 ) ↔ ( ( 𝑔 ∈ ( 𝑌 𝐻 𝑧 ) ↦ ( 𝑔 ( 〈 𝑋 , 𝑌 〉 · 𝑧 ) 𝐹 ) ) : ( 𝑌 𝐻 𝑧 ) ⟶ ( 𝑋 𝐻 𝑧 ) ∧ Fun ◡ ( 𝑔 ∈ ( 𝑌 𝐻 𝑧 ) ↦ ( 𝑔 ( 〈 𝑋 , 𝑌 〉 · 𝑧 ) 𝐹 ) ) ) ) | |
| 21 | 20 | baib | ⊢ ( ( 𝑔 ∈ ( 𝑌 𝐻 𝑧 ) ↦ ( 𝑔 ( 〈 𝑋 , 𝑌 〉 · 𝑧 ) 𝐹 ) ) : ( 𝑌 𝐻 𝑧 ) ⟶ ( 𝑋 𝐻 𝑧 ) → ( ( 𝑔 ∈ ( 𝑌 𝐻 𝑧 ) ↦ ( 𝑔 ( 〈 𝑋 , 𝑌 〉 · 𝑧 ) 𝐹 ) ) : ( 𝑌 𝐻 𝑧 ) –1-1→ ( 𝑋 𝐻 𝑧 ) ↔ Fun ◡ ( 𝑔 ∈ ( 𝑌 𝐻 𝑧 ) ↦ ( 𝑔 ( 〈 𝑋 , 𝑌 〉 · 𝑧 ) 𝐹 ) ) ) ) |
| 22 | 19 21 | sylbi | ⊢ ( ∀ 𝑔 ∈ ( 𝑌 𝐻 𝑧 ) ( 𝑔 ( 〈 𝑋 , 𝑌 〉 · 𝑧 ) 𝐹 ) ∈ ( 𝑋 𝐻 𝑧 ) → ( ( 𝑔 ∈ ( 𝑌 𝐻 𝑧 ) ↦ ( 𝑔 ( 〈 𝑋 , 𝑌 〉 · 𝑧 ) 𝐹 ) ) : ( 𝑌 𝐻 𝑧 ) –1-1→ ( 𝑋 𝐻 𝑧 ) ↔ Fun ◡ ( 𝑔 ∈ ( 𝑌 𝐻 𝑧 ) ↦ ( 𝑔 ( 〈 𝑋 , 𝑌 〉 · 𝑧 ) 𝐹 ) ) ) ) |
| 23 | oveq1 | ⊢ ( 𝑔 = ℎ → ( 𝑔 ( 〈 𝑋 , 𝑌 〉 · 𝑧 ) 𝐹 ) = ( ℎ ( 〈 𝑋 , 𝑌 〉 · 𝑧 ) 𝐹 ) ) | |
| 24 | 18 23 | f1mpt | ⊢ ( ( 𝑔 ∈ ( 𝑌 𝐻 𝑧 ) ↦ ( 𝑔 ( 〈 𝑋 , 𝑌 〉 · 𝑧 ) 𝐹 ) ) : ( 𝑌 𝐻 𝑧 ) –1-1→ ( 𝑋 𝐻 𝑧 ) ↔ ( ∀ 𝑔 ∈ ( 𝑌 𝐻 𝑧 ) ( 𝑔 ( 〈 𝑋 , 𝑌 〉 · 𝑧 ) 𝐹 ) ∈ ( 𝑋 𝐻 𝑧 ) ∧ ∀ 𝑔 ∈ ( 𝑌 𝐻 𝑧 ) ∀ ℎ ∈ ( 𝑌 𝐻 𝑧 ) ( ( 𝑔 ( 〈 𝑋 , 𝑌 〉 · 𝑧 ) 𝐹 ) = ( ℎ ( 〈 𝑋 , 𝑌 〉 · 𝑧 ) 𝐹 ) → 𝑔 = ℎ ) ) ) |
| 25 | 24 | baib | ⊢ ( ∀ 𝑔 ∈ ( 𝑌 𝐻 𝑧 ) ( 𝑔 ( 〈 𝑋 , 𝑌 〉 · 𝑧 ) 𝐹 ) ∈ ( 𝑋 𝐻 𝑧 ) → ( ( 𝑔 ∈ ( 𝑌 𝐻 𝑧 ) ↦ ( 𝑔 ( 〈 𝑋 , 𝑌 〉 · 𝑧 ) 𝐹 ) ) : ( 𝑌 𝐻 𝑧 ) –1-1→ ( 𝑋 𝐻 𝑧 ) ↔ ∀ 𝑔 ∈ ( 𝑌 𝐻 𝑧 ) ∀ ℎ ∈ ( 𝑌 𝐻 𝑧 ) ( ( 𝑔 ( 〈 𝑋 , 𝑌 〉 · 𝑧 ) 𝐹 ) = ( ℎ ( 〈 𝑋 , 𝑌 〉 · 𝑧 ) 𝐹 ) → 𝑔 = ℎ ) ) ) |
| 26 | 22 25 | bitr3d | ⊢ ( ∀ 𝑔 ∈ ( 𝑌 𝐻 𝑧 ) ( 𝑔 ( 〈 𝑋 , 𝑌 〉 · 𝑧 ) 𝐹 ) ∈ ( 𝑋 𝐻 𝑧 ) → ( Fun ◡ ( 𝑔 ∈ ( 𝑌 𝐻 𝑧 ) ↦ ( 𝑔 ( 〈 𝑋 , 𝑌 〉 · 𝑧 ) 𝐹 ) ) ↔ ∀ 𝑔 ∈ ( 𝑌 𝐻 𝑧 ) ∀ ℎ ∈ ( 𝑌 𝐻 𝑧 ) ( ( 𝑔 ( 〈 𝑋 , 𝑌 〉 · 𝑧 ) 𝐹 ) = ( ℎ ( 〈 𝑋 , 𝑌 〉 · 𝑧 ) 𝐹 ) → 𝑔 = ℎ ) ) ) |
| 27 | 17 26 | syl | ⊢ ( ( ( 𝜑 ∧ 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) ) ∧ 𝑧 ∈ 𝐵 ) → ( Fun ◡ ( 𝑔 ∈ ( 𝑌 𝐻 𝑧 ) ↦ ( 𝑔 ( 〈 𝑋 , 𝑌 〉 · 𝑧 ) 𝐹 ) ) ↔ ∀ 𝑔 ∈ ( 𝑌 𝐻 𝑧 ) ∀ ℎ ∈ ( 𝑌 𝐻 𝑧 ) ( ( 𝑔 ( 〈 𝑋 , 𝑌 〉 · 𝑧 ) 𝐹 ) = ( ℎ ( 〈 𝑋 , 𝑌 〉 · 𝑧 ) 𝐹 ) → 𝑔 = ℎ ) ) ) |
| 28 | 27 | ralbidva | ⊢ ( ( 𝜑 ∧ 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) ) → ( ∀ 𝑧 ∈ 𝐵 Fun ◡ ( 𝑔 ∈ ( 𝑌 𝐻 𝑧 ) ↦ ( 𝑔 ( 〈 𝑋 , 𝑌 〉 · 𝑧 ) 𝐹 ) ) ↔ ∀ 𝑧 ∈ 𝐵 ∀ 𝑔 ∈ ( 𝑌 𝐻 𝑧 ) ∀ ℎ ∈ ( 𝑌 𝐻 𝑧 ) ( ( 𝑔 ( 〈 𝑋 , 𝑌 〉 · 𝑧 ) 𝐹 ) = ( ℎ ( 〈 𝑋 , 𝑌 〉 · 𝑧 ) 𝐹 ) → 𝑔 = ℎ ) ) ) |
| 29 | 28 | pm5.32da | ⊢ ( 𝜑 → ( ( 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) ∧ ∀ 𝑧 ∈ 𝐵 Fun ◡ ( 𝑔 ∈ ( 𝑌 𝐻 𝑧 ) ↦ ( 𝑔 ( 〈 𝑋 , 𝑌 〉 · 𝑧 ) 𝐹 ) ) ) ↔ ( 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) ∧ ∀ 𝑧 ∈ 𝐵 ∀ 𝑔 ∈ ( 𝑌 𝐻 𝑧 ) ∀ ℎ ∈ ( 𝑌 𝐻 𝑧 ) ( ( 𝑔 ( 〈 𝑋 , 𝑌 〉 · 𝑧 ) 𝐹 ) = ( ℎ ( 〈 𝑋 , 𝑌 〉 · 𝑧 ) 𝐹 ) → 𝑔 = ℎ ) ) ) ) |
| 30 | 8 29 | bitrd | ⊢ ( 𝜑 → ( 𝐹 ∈ ( 𝑋 𝐸 𝑌 ) ↔ ( 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) ∧ ∀ 𝑧 ∈ 𝐵 ∀ 𝑔 ∈ ( 𝑌 𝐻 𝑧 ) ∀ ℎ ∈ ( 𝑌 𝐻 𝑧 ) ( ( 𝑔 ( 〈 𝑋 , 𝑌 〉 · 𝑧 ) 𝐹 ) = ( ℎ ( 〈 𝑋 , 𝑌 〉 · 𝑧 ) 𝐹 ) → 𝑔 = ℎ ) ) ) ) |