This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Definition of an epimorphism in a category. (Contributed by Mario Carneiro, 2-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isepi.b | |- B = ( Base ` C ) |
|
| isepi.h | |- H = ( Hom ` C ) |
||
| isepi.o | |- .x. = ( comp ` C ) |
||
| isepi.e | |- E = ( Epi ` C ) |
||
| isepi.c | |- ( ph -> C e. Cat ) |
||
| isepi.x | |- ( ph -> X e. B ) |
||
| isepi.y | |- ( ph -> Y e. B ) |
||
| Assertion | isepi | |- ( ph -> ( F e. ( X E Y ) <-> ( F e. ( X H Y ) /\ A. z e. B Fun `' ( g e. ( Y H z ) |-> ( g ( <. X , Y >. .x. z ) F ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isepi.b | |- B = ( Base ` C ) |
|
| 2 | isepi.h | |- H = ( Hom ` C ) |
|
| 3 | isepi.o | |- .x. = ( comp ` C ) |
|
| 4 | isepi.e | |- E = ( Epi ` C ) |
|
| 5 | isepi.c | |- ( ph -> C e. Cat ) |
|
| 6 | isepi.x | |- ( ph -> X e. B ) |
|
| 7 | isepi.y | |- ( ph -> Y e. B ) |
|
| 8 | eqid | |- ( oppCat ` C ) = ( oppCat ` C ) |
|
| 9 | 8 1 | oppcbas | |- B = ( Base ` ( oppCat ` C ) ) |
| 10 | eqid | |- ( Hom ` ( oppCat ` C ) ) = ( Hom ` ( oppCat ` C ) ) |
|
| 11 | eqid | |- ( comp ` ( oppCat ` C ) ) = ( comp ` ( oppCat ` C ) ) |
|
| 12 | eqid | |- ( Mono ` ( oppCat ` C ) ) = ( Mono ` ( oppCat ` C ) ) |
|
| 13 | 8 | oppccat | |- ( C e. Cat -> ( oppCat ` C ) e. Cat ) |
| 14 | 5 13 | syl | |- ( ph -> ( oppCat ` C ) e. Cat ) |
| 15 | 9 10 11 12 14 7 6 | ismon | |- ( ph -> ( F e. ( Y ( Mono ` ( oppCat ` C ) ) X ) <-> ( F e. ( Y ( Hom ` ( oppCat ` C ) ) X ) /\ A. z e. B Fun `' ( g e. ( z ( Hom ` ( oppCat ` C ) ) Y ) |-> ( F ( <. z , Y >. ( comp ` ( oppCat ` C ) ) X ) g ) ) ) ) ) |
| 16 | 8 5 12 4 | oppcmon | |- ( ph -> ( Y ( Mono ` ( oppCat ` C ) ) X ) = ( X E Y ) ) |
| 17 | 16 | eleq2d | |- ( ph -> ( F e. ( Y ( Mono ` ( oppCat ` C ) ) X ) <-> F e. ( X E Y ) ) ) |
| 18 | 2 8 | oppchom | |- ( Y ( Hom ` ( oppCat ` C ) ) X ) = ( X H Y ) |
| 19 | 18 | a1i | |- ( ph -> ( Y ( Hom ` ( oppCat ` C ) ) X ) = ( X H Y ) ) |
| 20 | 19 | eleq2d | |- ( ph -> ( F e. ( Y ( Hom ` ( oppCat ` C ) ) X ) <-> F e. ( X H Y ) ) ) |
| 21 | 2 8 | oppchom | |- ( z ( Hom ` ( oppCat ` C ) ) Y ) = ( Y H z ) |
| 22 | 21 | a1i | |- ( ( ph /\ z e. B ) -> ( z ( Hom ` ( oppCat ` C ) ) Y ) = ( Y H z ) ) |
| 23 | simpr | |- ( ( ph /\ z e. B ) -> z e. B ) |
|
| 24 | 7 | adantr | |- ( ( ph /\ z e. B ) -> Y e. B ) |
| 25 | 6 | adantr | |- ( ( ph /\ z e. B ) -> X e. B ) |
| 26 | 1 3 8 23 24 25 | oppcco | |- ( ( ph /\ z e. B ) -> ( F ( <. z , Y >. ( comp ` ( oppCat ` C ) ) X ) g ) = ( g ( <. X , Y >. .x. z ) F ) ) |
| 27 | 22 26 | mpteq12dv | |- ( ( ph /\ z e. B ) -> ( g e. ( z ( Hom ` ( oppCat ` C ) ) Y ) |-> ( F ( <. z , Y >. ( comp ` ( oppCat ` C ) ) X ) g ) ) = ( g e. ( Y H z ) |-> ( g ( <. X , Y >. .x. z ) F ) ) ) |
| 28 | 27 | cnveqd | |- ( ( ph /\ z e. B ) -> `' ( g e. ( z ( Hom ` ( oppCat ` C ) ) Y ) |-> ( F ( <. z , Y >. ( comp ` ( oppCat ` C ) ) X ) g ) ) = `' ( g e. ( Y H z ) |-> ( g ( <. X , Y >. .x. z ) F ) ) ) |
| 29 | 28 | funeqd | |- ( ( ph /\ z e. B ) -> ( Fun `' ( g e. ( z ( Hom ` ( oppCat ` C ) ) Y ) |-> ( F ( <. z , Y >. ( comp ` ( oppCat ` C ) ) X ) g ) ) <-> Fun `' ( g e. ( Y H z ) |-> ( g ( <. X , Y >. .x. z ) F ) ) ) ) |
| 30 | 29 | ralbidva | |- ( ph -> ( A. z e. B Fun `' ( g e. ( z ( Hom ` ( oppCat ` C ) ) Y ) |-> ( F ( <. z , Y >. ( comp ` ( oppCat ` C ) ) X ) g ) ) <-> A. z e. B Fun `' ( g e. ( Y H z ) |-> ( g ( <. X , Y >. .x. z ) F ) ) ) ) |
| 31 | 20 30 | anbi12d | |- ( ph -> ( ( F e. ( Y ( Hom ` ( oppCat ` C ) ) X ) /\ A. z e. B Fun `' ( g e. ( z ( Hom ` ( oppCat ` C ) ) Y ) |-> ( F ( <. z , Y >. ( comp ` ( oppCat ` C ) ) X ) g ) ) ) <-> ( F e. ( X H Y ) /\ A. z e. B Fun `' ( g e. ( Y H z ) |-> ( g ( <. X , Y >. .x. z ) F ) ) ) ) ) |
| 32 | 15 17 31 | 3bitr3d | |- ( ph -> ( F e. ( X E Y ) <-> ( F e. ( X H Y ) /\ A. z e. B Fun `' ( g e. ( Y H z ) |-> ( g ( <. X , Y >. .x. z ) F ) ) ) ) ) |