This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Direction of a directed set. (Contributed by Stefan O'Rear, 1-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isdrs.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| isdrs.l | ⊢ ≤ = ( le ‘ 𝐾 ) | ||
| Assertion | drsdir | ⊢ ( ( 𝐾 ∈ Dirset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ∃ 𝑧 ∈ 𝐵 ( 𝑋 ≤ 𝑧 ∧ 𝑌 ≤ 𝑧 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isdrs.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| 2 | isdrs.l | ⊢ ≤ = ( le ‘ 𝐾 ) | |
| 3 | 1 2 | isdrs | ⊢ ( 𝐾 ∈ Dirset ↔ ( 𝐾 ∈ Proset ∧ 𝐵 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∃ 𝑧 ∈ 𝐵 ( 𝑥 ≤ 𝑧 ∧ 𝑦 ≤ 𝑧 ) ) ) |
| 4 | 3 | simp3bi | ⊢ ( 𝐾 ∈ Dirset → ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∃ 𝑧 ∈ 𝐵 ( 𝑥 ≤ 𝑧 ∧ 𝑦 ≤ 𝑧 ) ) |
| 5 | breq1 | ⊢ ( 𝑥 = 𝑋 → ( 𝑥 ≤ 𝑧 ↔ 𝑋 ≤ 𝑧 ) ) | |
| 6 | 5 | anbi1d | ⊢ ( 𝑥 = 𝑋 → ( ( 𝑥 ≤ 𝑧 ∧ 𝑦 ≤ 𝑧 ) ↔ ( 𝑋 ≤ 𝑧 ∧ 𝑦 ≤ 𝑧 ) ) ) |
| 7 | 6 | rexbidv | ⊢ ( 𝑥 = 𝑋 → ( ∃ 𝑧 ∈ 𝐵 ( 𝑥 ≤ 𝑧 ∧ 𝑦 ≤ 𝑧 ) ↔ ∃ 𝑧 ∈ 𝐵 ( 𝑋 ≤ 𝑧 ∧ 𝑦 ≤ 𝑧 ) ) ) |
| 8 | breq1 | ⊢ ( 𝑦 = 𝑌 → ( 𝑦 ≤ 𝑧 ↔ 𝑌 ≤ 𝑧 ) ) | |
| 9 | 8 | anbi2d | ⊢ ( 𝑦 = 𝑌 → ( ( 𝑋 ≤ 𝑧 ∧ 𝑦 ≤ 𝑧 ) ↔ ( 𝑋 ≤ 𝑧 ∧ 𝑌 ≤ 𝑧 ) ) ) |
| 10 | 9 | rexbidv | ⊢ ( 𝑦 = 𝑌 → ( ∃ 𝑧 ∈ 𝐵 ( 𝑋 ≤ 𝑧 ∧ 𝑦 ≤ 𝑧 ) ↔ ∃ 𝑧 ∈ 𝐵 ( 𝑋 ≤ 𝑧 ∧ 𝑌 ≤ 𝑧 ) ) ) |
| 11 | 7 10 | rspc2v | ⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∃ 𝑧 ∈ 𝐵 ( 𝑥 ≤ 𝑧 ∧ 𝑦 ≤ 𝑧 ) → ∃ 𝑧 ∈ 𝐵 ( 𝑋 ≤ 𝑧 ∧ 𝑌 ≤ 𝑧 ) ) ) |
| 12 | 4 11 | syl5com | ⊢ ( 𝐾 ∈ Dirset → ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ∃ 𝑧 ∈ 𝐵 ( 𝑋 ≤ 𝑧 ∧ 𝑌 ≤ 𝑧 ) ) ) |
| 13 | 12 | 3impib | ⊢ ( ( 𝐾 ∈ Dirset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ∃ 𝑧 ∈ 𝐵 ( 𝑋 ≤ 𝑧 ∧ 𝑌 ≤ 𝑧 ) ) |