This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: In a distributive lattice, meets distribute over joins. (Contributed by Stefan O'Rear, 30-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isdlat.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| isdlat.j | ⊢ ∨ = ( join ‘ 𝐾 ) | ||
| isdlat.m | ⊢ ∧ = ( meet ‘ 𝐾 ) | ||
| Assertion | dlatmjdi | ⊢ ( ( 𝐾 ∈ DLat ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( 𝑋 ∧ ( 𝑌 ∨ 𝑍 ) ) = ( ( 𝑋 ∧ 𝑌 ) ∨ ( 𝑋 ∧ 𝑍 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isdlat.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| 2 | isdlat.j | ⊢ ∨ = ( join ‘ 𝐾 ) | |
| 3 | isdlat.m | ⊢ ∧ = ( meet ‘ 𝐾 ) | |
| 4 | 1 2 3 | isdlat | ⊢ ( 𝐾 ∈ DLat ↔ ( 𝐾 ∈ Lat ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( 𝑥 ∧ ( 𝑦 ∨ 𝑧 ) ) = ( ( 𝑥 ∧ 𝑦 ) ∨ ( 𝑥 ∧ 𝑧 ) ) ) ) |
| 5 | 4 | simprbi | ⊢ ( 𝐾 ∈ DLat → ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( 𝑥 ∧ ( 𝑦 ∨ 𝑧 ) ) = ( ( 𝑥 ∧ 𝑦 ) ∨ ( 𝑥 ∧ 𝑧 ) ) ) |
| 6 | oveq1 | ⊢ ( 𝑥 = 𝑋 → ( 𝑥 ∧ ( 𝑦 ∨ 𝑧 ) ) = ( 𝑋 ∧ ( 𝑦 ∨ 𝑧 ) ) ) | |
| 7 | oveq1 | ⊢ ( 𝑥 = 𝑋 → ( 𝑥 ∧ 𝑦 ) = ( 𝑋 ∧ 𝑦 ) ) | |
| 8 | oveq1 | ⊢ ( 𝑥 = 𝑋 → ( 𝑥 ∧ 𝑧 ) = ( 𝑋 ∧ 𝑧 ) ) | |
| 9 | 7 8 | oveq12d | ⊢ ( 𝑥 = 𝑋 → ( ( 𝑥 ∧ 𝑦 ) ∨ ( 𝑥 ∧ 𝑧 ) ) = ( ( 𝑋 ∧ 𝑦 ) ∨ ( 𝑋 ∧ 𝑧 ) ) ) |
| 10 | 6 9 | eqeq12d | ⊢ ( 𝑥 = 𝑋 → ( ( 𝑥 ∧ ( 𝑦 ∨ 𝑧 ) ) = ( ( 𝑥 ∧ 𝑦 ) ∨ ( 𝑥 ∧ 𝑧 ) ) ↔ ( 𝑋 ∧ ( 𝑦 ∨ 𝑧 ) ) = ( ( 𝑋 ∧ 𝑦 ) ∨ ( 𝑋 ∧ 𝑧 ) ) ) ) |
| 11 | oveq1 | ⊢ ( 𝑦 = 𝑌 → ( 𝑦 ∨ 𝑧 ) = ( 𝑌 ∨ 𝑧 ) ) | |
| 12 | 11 | oveq2d | ⊢ ( 𝑦 = 𝑌 → ( 𝑋 ∧ ( 𝑦 ∨ 𝑧 ) ) = ( 𝑋 ∧ ( 𝑌 ∨ 𝑧 ) ) ) |
| 13 | oveq2 | ⊢ ( 𝑦 = 𝑌 → ( 𝑋 ∧ 𝑦 ) = ( 𝑋 ∧ 𝑌 ) ) | |
| 14 | 13 | oveq1d | ⊢ ( 𝑦 = 𝑌 → ( ( 𝑋 ∧ 𝑦 ) ∨ ( 𝑋 ∧ 𝑧 ) ) = ( ( 𝑋 ∧ 𝑌 ) ∨ ( 𝑋 ∧ 𝑧 ) ) ) |
| 15 | 12 14 | eqeq12d | ⊢ ( 𝑦 = 𝑌 → ( ( 𝑋 ∧ ( 𝑦 ∨ 𝑧 ) ) = ( ( 𝑋 ∧ 𝑦 ) ∨ ( 𝑋 ∧ 𝑧 ) ) ↔ ( 𝑋 ∧ ( 𝑌 ∨ 𝑧 ) ) = ( ( 𝑋 ∧ 𝑌 ) ∨ ( 𝑋 ∧ 𝑧 ) ) ) ) |
| 16 | oveq2 | ⊢ ( 𝑧 = 𝑍 → ( 𝑌 ∨ 𝑧 ) = ( 𝑌 ∨ 𝑍 ) ) | |
| 17 | 16 | oveq2d | ⊢ ( 𝑧 = 𝑍 → ( 𝑋 ∧ ( 𝑌 ∨ 𝑧 ) ) = ( 𝑋 ∧ ( 𝑌 ∨ 𝑍 ) ) ) |
| 18 | oveq2 | ⊢ ( 𝑧 = 𝑍 → ( 𝑋 ∧ 𝑧 ) = ( 𝑋 ∧ 𝑍 ) ) | |
| 19 | 18 | oveq2d | ⊢ ( 𝑧 = 𝑍 → ( ( 𝑋 ∧ 𝑌 ) ∨ ( 𝑋 ∧ 𝑧 ) ) = ( ( 𝑋 ∧ 𝑌 ) ∨ ( 𝑋 ∧ 𝑍 ) ) ) |
| 20 | 17 19 | eqeq12d | ⊢ ( 𝑧 = 𝑍 → ( ( 𝑋 ∧ ( 𝑌 ∨ 𝑧 ) ) = ( ( 𝑋 ∧ 𝑌 ) ∨ ( 𝑋 ∧ 𝑧 ) ) ↔ ( 𝑋 ∧ ( 𝑌 ∨ 𝑍 ) ) = ( ( 𝑋 ∧ 𝑌 ) ∨ ( 𝑋 ∧ 𝑍 ) ) ) ) |
| 21 | 10 15 20 | rspc3v | ⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) → ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( 𝑥 ∧ ( 𝑦 ∨ 𝑧 ) ) = ( ( 𝑥 ∧ 𝑦 ) ∨ ( 𝑥 ∧ 𝑧 ) ) → ( 𝑋 ∧ ( 𝑌 ∨ 𝑍 ) ) = ( ( 𝑋 ∧ 𝑌 ) ∨ ( 𝑋 ∧ 𝑍 ) ) ) ) |
| 22 | 5 21 | mpan9 | ⊢ ( ( 𝐾 ∈ DLat ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( 𝑋 ∧ ( 𝑌 ∨ 𝑍 ) ) = ( ( 𝑋 ∧ 𝑌 ) ∨ ( 𝑋 ∧ 𝑍 ) ) ) |