This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Adistributive lattice is a lattice in which meets distribute over joins, or equivalently ( latdisd ) joins distribute over meets. (Contributed by Stefan O'Rear, 30-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-dlat | ⊢ DLat = { 𝑘 ∈ Lat ∣ [ ( Base ‘ 𝑘 ) / 𝑏 ] [ ( join ‘ 𝑘 ) / 𝑗 ] [ ( meet ‘ 𝑘 ) / 𝑚 ] ∀ 𝑥 ∈ 𝑏 ∀ 𝑦 ∈ 𝑏 ∀ 𝑧 ∈ 𝑏 ( 𝑥 𝑚 ( 𝑦 𝑗 𝑧 ) ) = ( ( 𝑥 𝑚 𝑦 ) 𝑗 ( 𝑥 𝑚 𝑧 ) ) } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cdlat | ⊢ DLat | |
| 1 | vk | ⊢ 𝑘 | |
| 2 | clat | ⊢ Lat | |
| 3 | cbs | ⊢ Base | |
| 4 | 1 | cv | ⊢ 𝑘 |
| 5 | 4 3 | cfv | ⊢ ( Base ‘ 𝑘 ) |
| 6 | vb | ⊢ 𝑏 | |
| 7 | cjn | ⊢ join | |
| 8 | 4 7 | cfv | ⊢ ( join ‘ 𝑘 ) |
| 9 | vj | ⊢ 𝑗 | |
| 10 | cmee | ⊢ meet | |
| 11 | 4 10 | cfv | ⊢ ( meet ‘ 𝑘 ) |
| 12 | vm | ⊢ 𝑚 | |
| 13 | vx | ⊢ 𝑥 | |
| 14 | 6 | cv | ⊢ 𝑏 |
| 15 | vy | ⊢ 𝑦 | |
| 16 | vz | ⊢ 𝑧 | |
| 17 | 13 | cv | ⊢ 𝑥 |
| 18 | 12 | cv | ⊢ 𝑚 |
| 19 | 15 | cv | ⊢ 𝑦 |
| 20 | 9 | cv | ⊢ 𝑗 |
| 21 | 16 | cv | ⊢ 𝑧 |
| 22 | 19 21 20 | co | ⊢ ( 𝑦 𝑗 𝑧 ) |
| 23 | 17 22 18 | co | ⊢ ( 𝑥 𝑚 ( 𝑦 𝑗 𝑧 ) ) |
| 24 | 17 19 18 | co | ⊢ ( 𝑥 𝑚 𝑦 ) |
| 25 | 17 21 18 | co | ⊢ ( 𝑥 𝑚 𝑧 ) |
| 26 | 24 25 20 | co | ⊢ ( ( 𝑥 𝑚 𝑦 ) 𝑗 ( 𝑥 𝑚 𝑧 ) ) |
| 27 | 23 26 | wceq | ⊢ ( 𝑥 𝑚 ( 𝑦 𝑗 𝑧 ) ) = ( ( 𝑥 𝑚 𝑦 ) 𝑗 ( 𝑥 𝑚 𝑧 ) ) |
| 28 | 27 16 14 | wral | ⊢ ∀ 𝑧 ∈ 𝑏 ( 𝑥 𝑚 ( 𝑦 𝑗 𝑧 ) ) = ( ( 𝑥 𝑚 𝑦 ) 𝑗 ( 𝑥 𝑚 𝑧 ) ) |
| 29 | 28 15 14 | wral | ⊢ ∀ 𝑦 ∈ 𝑏 ∀ 𝑧 ∈ 𝑏 ( 𝑥 𝑚 ( 𝑦 𝑗 𝑧 ) ) = ( ( 𝑥 𝑚 𝑦 ) 𝑗 ( 𝑥 𝑚 𝑧 ) ) |
| 30 | 29 13 14 | wral | ⊢ ∀ 𝑥 ∈ 𝑏 ∀ 𝑦 ∈ 𝑏 ∀ 𝑧 ∈ 𝑏 ( 𝑥 𝑚 ( 𝑦 𝑗 𝑧 ) ) = ( ( 𝑥 𝑚 𝑦 ) 𝑗 ( 𝑥 𝑚 𝑧 ) ) |
| 31 | 30 12 11 | wsbc | ⊢ [ ( meet ‘ 𝑘 ) / 𝑚 ] ∀ 𝑥 ∈ 𝑏 ∀ 𝑦 ∈ 𝑏 ∀ 𝑧 ∈ 𝑏 ( 𝑥 𝑚 ( 𝑦 𝑗 𝑧 ) ) = ( ( 𝑥 𝑚 𝑦 ) 𝑗 ( 𝑥 𝑚 𝑧 ) ) |
| 32 | 31 9 8 | wsbc | ⊢ [ ( join ‘ 𝑘 ) / 𝑗 ] [ ( meet ‘ 𝑘 ) / 𝑚 ] ∀ 𝑥 ∈ 𝑏 ∀ 𝑦 ∈ 𝑏 ∀ 𝑧 ∈ 𝑏 ( 𝑥 𝑚 ( 𝑦 𝑗 𝑧 ) ) = ( ( 𝑥 𝑚 𝑦 ) 𝑗 ( 𝑥 𝑚 𝑧 ) ) |
| 33 | 32 6 5 | wsbc | ⊢ [ ( Base ‘ 𝑘 ) / 𝑏 ] [ ( join ‘ 𝑘 ) / 𝑗 ] [ ( meet ‘ 𝑘 ) / 𝑚 ] ∀ 𝑥 ∈ 𝑏 ∀ 𝑦 ∈ 𝑏 ∀ 𝑧 ∈ 𝑏 ( 𝑥 𝑚 ( 𝑦 𝑗 𝑧 ) ) = ( ( 𝑥 𝑚 𝑦 ) 𝑗 ( 𝑥 𝑚 𝑧 ) ) |
| 34 | 33 1 2 | crab | ⊢ { 𝑘 ∈ Lat ∣ [ ( Base ‘ 𝑘 ) / 𝑏 ] [ ( join ‘ 𝑘 ) / 𝑗 ] [ ( meet ‘ 𝑘 ) / 𝑚 ] ∀ 𝑥 ∈ 𝑏 ∀ 𝑦 ∈ 𝑏 ∀ 𝑧 ∈ 𝑏 ( 𝑥 𝑚 ( 𝑦 𝑗 𝑧 ) ) = ( ( 𝑥 𝑚 𝑦 ) 𝑗 ( 𝑥 𝑚 𝑧 ) ) } |
| 35 | 0 34 | wceq | ⊢ DLat = { 𝑘 ∈ Lat ∣ [ ( Base ‘ 𝑘 ) / 𝑏 ] [ ( join ‘ 𝑘 ) / 𝑗 ] [ ( meet ‘ 𝑘 ) / 𝑚 ] ∀ 𝑥 ∈ 𝑏 ∀ 𝑦 ∈ 𝑏 ∀ 𝑧 ∈ 𝑏 ( 𝑥 𝑚 ( 𝑦 𝑗 𝑧 ) ) = ( ( 𝑥 𝑚 𝑦 ) 𝑗 ( 𝑥 𝑚 𝑧 ) ) } |