This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the set of complete metrics on a given set. (Contributed by Mario Carneiro, 1-May-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-cmet | ⊢ CMet = ( 𝑥 ∈ V ↦ { 𝑑 ∈ ( Met ‘ 𝑥 ) ∣ ∀ 𝑓 ∈ ( CauFil ‘ 𝑑 ) ( ( MetOpen ‘ 𝑑 ) fLim 𝑓 ) ≠ ∅ } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | ccmet | ⊢ CMet | |
| 1 | vx | ⊢ 𝑥 | |
| 2 | cvv | ⊢ V | |
| 3 | vd | ⊢ 𝑑 | |
| 4 | cmet | ⊢ Met | |
| 5 | 1 | cv | ⊢ 𝑥 |
| 6 | 5 4 | cfv | ⊢ ( Met ‘ 𝑥 ) |
| 7 | vf | ⊢ 𝑓 | |
| 8 | ccfil | ⊢ CauFil | |
| 9 | 3 | cv | ⊢ 𝑑 |
| 10 | 9 8 | cfv | ⊢ ( CauFil ‘ 𝑑 ) |
| 11 | cmopn | ⊢ MetOpen | |
| 12 | 9 11 | cfv | ⊢ ( MetOpen ‘ 𝑑 ) |
| 13 | cflim | ⊢ fLim | |
| 14 | 7 | cv | ⊢ 𝑓 |
| 15 | 12 14 13 | co | ⊢ ( ( MetOpen ‘ 𝑑 ) fLim 𝑓 ) |
| 16 | c0 | ⊢ ∅ | |
| 17 | 15 16 | wne | ⊢ ( ( MetOpen ‘ 𝑑 ) fLim 𝑓 ) ≠ ∅ |
| 18 | 17 7 10 | wral | ⊢ ∀ 𝑓 ∈ ( CauFil ‘ 𝑑 ) ( ( MetOpen ‘ 𝑑 ) fLim 𝑓 ) ≠ ∅ |
| 19 | 18 3 6 | crab | ⊢ { 𝑑 ∈ ( Met ‘ 𝑥 ) ∣ ∀ 𝑓 ∈ ( CauFil ‘ 𝑑 ) ( ( MetOpen ‘ 𝑑 ) fLim 𝑓 ) ≠ ∅ } |
| 20 | 1 2 19 | cmpt | ⊢ ( 𝑥 ∈ V ↦ { 𝑑 ∈ ( Met ‘ 𝑥 ) ∣ ∀ 𝑓 ∈ ( CauFil ‘ 𝑑 ) ( ( MetOpen ‘ 𝑑 ) fLim 𝑓 ) ≠ ∅ } ) |
| 21 | 0 20 | wceq | ⊢ CMet = ( 𝑥 ∈ V ↦ { 𝑑 ∈ ( Met ‘ 𝑥 ) ∣ ∀ 𝑓 ∈ ( CauFil ‘ 𝑑 ) ( ( MetOpen ‘ 𝑑 ) fLim 𝑓 ) ≠ ∅ } ) |