This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The open sets of a discrete topology are closed and its closed sets are open. (Contributed by FL, 7-Jun-2007) (Revised by Mario Carneiro, 7-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | discld | ⊢ ( 𝐴 ∈ 𝑉 → ( Clsd ‘ 𝒫 𝐴 ) = 𝒫 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | difss | ⊢ ( 𝐴 ∖ 𝑥 ) ⊆ 𝐴 | |
| 2 | elpw2g | ⊢ ( 𝐴 ∈ 𝑉 → ( ( 𝐴 ∖ 𝑥 ) ∈ 𝒫 𝐴 ↔ ( 𝐴 ∖ 𝑥 ) ⊆ 𝐴 ) ) | |
| 3 | 1 2 | mpbiri | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝐴 ∖ 𝑥 ) ∈ 𝒫 𝐴 ) |
| 4 | distop | ⊢ ( 𝐴 ∈ 𝑉 → 𝒫 𝐴 ∈ Top ) | |
| 5 | unipw | ⊢ ∪ 𝒫 𝐴 = 𝐴 | |
| 6 | 5 | eqcomi | ⊢ 𝐴 = ∪ 𝒫 𝐴 |
| 7 | 6 | iscld | ⊢ ( 𝒫 𝐴 ∈ Top → ( 𝑥 ∈ ( Clsd ‘ 𝒫 𝐴 ) ↔ ( 𝑥 ⊆ 𝐴 ∧ ( 𝐴 ∖ 𝑥 ) ∈ 𝒫 𝐴 ) ) ) |
| 8 | 4 7 | syl | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝑥 ∈ ( Clsd ‘ 𝒫 𝐴 ) ↔ ( 𝑥 ⊆ 𝐴 ∧ ( 𝐴 ∖ 𝑥 ) ∈ 𝒫 𝐴 ) ) ) |
| 9 | 3 8 | mpbiran2d | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝑥 ∈ ( Clsd ‘ 𝒫 𝐴 ) ↔ 𝑥 ⊆ 𝐴 ) ) |
| 10 | velpw | ⊢ ( 𝑥 ∈ 𝒫 𝐴 ↔ 𝑥 ⊆ 𝐴 ) | |
| 11 | 9 10 | bitr4di | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝑥 ∈ ( Clsd ‘ 𝒫 𝐴 ) ↔ 𝑥 ∈ 𝒫 𝐴 ) ) |
| 12 | 11 | eqrdv | ⊢ ( 𝐴 ∈ 𝑉 → ( Clsd ‘ 𝒫 𝐴 ) = 𝒫 𝐴 ) |