This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Completeness of a closed subspace of Hilbert space. (Contributed by NM, 4-Oct-1999) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | chcompl | ⊢ ( ( 𝐻 ∈ Cℋ ∧ 𝐹 ∈ Cauchy ∧ 𝐹 : ℕ ⟶ 𝐻 ) → ∃ 𝑥 ∈ 𝐻 𝐹 ⇝𝑣 𝑥 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isch3 | ⊢ ( 𝐻 ∈ Cℋ ↔ ( 𝐻 ∈ Sℋ ∧ ∀ 𝑓 ∈ Cauchy ( 𝑓 : ℕ ⟶ 𝐻 → ∃ 𝑥 ∈ 𝐻 𝑓 ⇝𝑣 𝑥 ) ) ) | |
| 2 | 1 | simprbi | ⊢ ( 𝐻 ∈ Cℋ → ∀ 𝑓 ∈ Cauchy ( 𝑓 : ℕ ⟶ 𝐻 → ∃ 𝑥 ∈ 𝐻 𝑓 ⇝𝑣 𝑥 ) ) |
| 3 | feq1 | ⊢ ( 𝑓 = 𝐹 → ( 𝑓 : ℕ ⟶ 𝐻 ↔ 𝐹 : ℕ ⟶ 𝐻 ) ) | |
| 4 | breq1 | ⊢ ( 𝑓 = 𝐹 → ( 𝑓 ⇝𝑣 𝑥 ↔ 𝐹 ⇝𝑣 𝑥 ) ) | |
| 5 | 4 | rexbidv | ⊢ ( 𝑓 = 𝐹 → ( ∃ 𝑥 ∈ 𝐻 𝑓 ⇝𝑣 𝑥 ↔ ∃ 𝑥 ∈ 𝐻 𝐹 ⇝𝑣 𝑥 ) ) |
| 6 | 3 5 | imbi12d | ⊢ ( 𝑓 = 𝐹 → ( ( 𝑓 : ℕ ⟶ 𝐻 → ∃ 𝑥 ∈ 𝐻 𝑓 ⇝𝑣 𝑥 ) ↔ ( 𝐹 : ℕ ⟶ 𝐻 → ∃ 𝑥 ∈ 𝐻 𝐹 ⇝𝑣 𝑥 ) ) ) |
| 7 | 6 | rspccv | ⊢ ( ∀ 𝑓 ∈ Cauchy ( 𝑓 : ℕ ⟶ 𝐻 → ∃ 𝑥 ∈ 𝐻 𝑓 ⇝𝑣 𝑥 ) → ( 𝐹 ∈ Cauchy → ( 𝐹 : ℕ ⟶ 𝐻 → ∃ 𝑥 ∈ 𝐻 𝐹 ⇝𝑣 𝑥 ) ) ) |
| 8 | 2 7 | syl | ⊢ ( 𝐻 ∈ Cℋ → ( 𝐹 ∈ Cauchy → ( 𝐹 : ℕ ⟶ 𝐻 → ∃ 𝑥 ∈ 𝐻 𝐹 ⇝𝑣 𝑥 ) ) ) |
| 9 | 8 | 3imp | ⊢ ( ( 𝐻 ∈ Cℋ ∧ 𝐹 ∈ Cauchy ∧ 𝐹 : ℕ ⟶ 𝐻 ) → ∃ 𝑥 ∈ 𝐻 𝐹 ⇝𝑣 𝑥 ) |