This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A Hilbert subspace is closed iff it is complete. A complete subspace is one in which every Cauchy sequence of vectors in the subspace converges to a member of the subspace (Definition of complete subspace in Beran p. 96). Remark 3.12 of Beran p. 107. (Contributed by NM, 24-Dec-2001) (Revised by Mario Carneiro, 14-May-2014) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | isch3 | |- ( H e. CH <-> ( H e. SH /\ A. f e. Cauchy ( f : NN --> H -> E. x e. H f ~~>v x ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isch2 | |- ( H e. CH <-> ( H e. SH /\ A. f A. x ( ( f : NN --> H /\ f ~~>v x ) -> x e. H ) ) ) |
|
| 2 | ax-hcompl | |- ( f e. Cauchy -> E. x e. ~H f ~~>v x ) |
|
| 3 | rexex | |- ( E. x e. ~H f ~~>v x -> E. x f ~~>v x ) |
|
| 4 | 2 3 | syl | |- ( f e. Cauchy -> E. x f ~~>v x ) |
| 5 | 19.29 | |- ( ( A. x ( ( f : NN --> H /\ f ~~>v x ) -> x e. H ) /\ E. x f ~~>v x ) -> E. x ( ( ( f : NN --> H /\ f ~~>v x ) -> x e. H ) /\ f ~~>v x ) ) |
|
| 6 | 4 5 | sylan2 | |- ( ( A. x ( ( f : NN --> H /\ f ~~>v x ) -> x e. H ) /\ f e. Cauchy ) -> E. x ( ( ( f : NN --> H /\ f ~~>v x ) -> x e. H ) /\ f ~~>v x ) ) |
| 7 | id | |- ( ( ( f : NN --> H /\ f ~~>v x ) -> x e. H ) -> ( ( f : NN --> H /\ f ~~>v x ) -> x e. H ) ) |
|
| 8 | 7 | imp | |- ( ( ( ( f : NN --> H /\ f ~~>v x ) -> x e. H ) /\ ( f : NN --> H /\ f ~~>v x ) ) -> x e. H ) |
| 9 | 8 | an12s | |- ( ( f : NN --> H /\ ( ( ( f : NN --> H /\ f ~~>v x ) -> x e. H ) /\ f ~~>v x ) ) -> x e. H ) |
| 10 | simprr | |- ( ( f : NN --> H /\ ( ( ( f : NN --> H /\ f ~~>v x ) -> x e. H ) /\ f ~~>v x ) ) -> f ~~>v x ) |
|
| 11 | 9 10 | jca | |- ( ( f : NN --> H /\ ( ( ( f : NN --> H /\ f ~~>v x ) -> x e. H ) /\ f ~~>v x ) ) -> ( x e. H /\ f ~~>v x ) ) |
| 12 | 11 | ex | |- ( f : NN --> H -> ( ( ( ( f : NN --> H /\ f ~~>v x ) -> x e. H ) /\ f ~~>v x ) -> ( x e. H /\ f ~~>v x ) ) ) |
| 13 | 12 | eximdv | |- ( f : NN --> H -> ( E. x ( ( ( f : NN --> H /\ f ~~>v x ) -> x e. H ) /\ f ~~>v x ) -> E. x ( x e. H /\ f ~~>v x ) ) ) |
| 14 | 13 | com12 | |- ( E. x ( ( ( f : NN --> H /\ f ~~>v x ) -> x e. H ) /\ f ~~>v x ) -> ( f : NN --> H -> E. x ( x e. H /\ f ~~>v x ) ) ) |
| 15 | df-rex | |- ( E. x e. H f ~~>v x <-> E. x ( x e. H /\ f ~~>v x ) ) |
|
| 16 | 14 15 | imbitrrdi | |- ( E. x ( ( ( f : NN --> H /\ f ~~>v x ) -> x e. H ) /\ f ~~>v x ) -> ( f : NN --> H -> E. x e. H f ~~>v x ) ) |
| 17 | 6 16 | syl | |- ( ( A. x ( ( f : NN --> H /\ f ~~>v x ) -> x e. H ) /\ f e. Cauchy ) -> ( f : NN --> H -> E. x e. H f ~~>v x ) ) |
| 18 | 17 | ex | |- ( A. x ( ( f : NN --> H /\ f ~~>v x ) -> x e. H ) -> ( f e. Cauchy -> ( f : NN --> H -> E. x e. H f ~~>v x ) ) ) |
| 19 | nfv | |- F/ x f e. Cauchy |
|
| 20 | nfv | |- F/ x f : NN --> H |
|
| 21 | nfre1 | |- F/ x E. x e. H f ~~>v x |
|
| 22 | 20 21 | nfim | |- F/ x ( f : NN --> H -> E. x e. H f ~~>v x ) |
| 23 | 19 22 | nfim | |- F/ x ( f e. Cauchy -> ( f : NN --> H -> E. x e. H f ~~>v x ) ) |
| 24 | bi2.04 | |- ( ( f e. Cauchy -> ( f : NN --> H -> E. x e. H f ~~>v x ) ) <-> ( f : NN --> H -> ( f e. Cauchy -> E. x e. H f ~~>v x ) ) ) |
|
| 25 | hlimcaui | |- ( f ~~>v x -> f e. Cauchy ) |
|
| 26 | 25 | imim1i | |- ( ( f e. Cauchy -> E. x e. H f ~~>v x ) -> ( f ~~>v x -> E. x e. H f ~~>v x ) ) |
| 27 | rexex | |- ( E. x e. H f ~~>v x -> E. x f ~~>v x ) |
|
| 28 | hlimeui | |- ( E. x f ~~>v x <-> E! x f ~~>v x ) |
|
| 29 | 27 28 | sylib | |- ( E. x e. H f ~~>v x -> E! x f ~~>v x ) |
| 30 | exancom | |- ( E. x ( x e. H /\ f ~~>v x ) <-> E. x ( f ~~>v x /\ x e. H ) ) |
|
| 31 | 15 30 | sylbb | |- ( E. x e. H f ~~>v x -> E. x ( f ~~>v x /\ x e. H ) ) |
| 32 | eupick | |- ( ( E! x f ~~>v x /\ E. x ( f ~~>v x /\ x e. H ) ) -> ( f ~~>v x -> x e. H ) ) |
|
| 33 | 29 31 32 | syl2anc | |- ( E. x e. H f ~~>v x -> ( f ~~>v x -> x e. H ) ) |
| 34 | 26 33 | syli | |- ( ( f e. Cauchy -> E. x e. H f ~~>v x ) -> ( f ~~>v x -> x e. H ) ) |
| 35 | 34 | imim2i | |- ( ( f : NN --> H -> ( f e. Cauchy -> E. x e. H f ~~>v x ) ) -> ( f : NN --> H -> ( f ~~>v x -> x e. H ) ) ) |
| 36 | 24 35 | sylbi | |- ( ( f e. Cauchy -> ( f : NN --> H -> E. x e. H f ~~>v x ) ) -> ( f : NN --> H -> ( f ~~>v x -> x e. H ) ) ) |
| 37 | 36 | impd | |- ( ( f e. Cauchy -> ( f : NN --> H -> E. x e. H f ~~>v x ) ) -> ( ( f : NN --> H /\ f ~~>v x ) -> x e. H ) ) |
| 38 | 23 37 | alrimi | |- ( ( f e. Cauchy -> ( f : NN --> H -> E. x e. H f ~~>v x ) ) -> A. x ( ( f : NN --> H /\ f ~~>v x ) -> x e. H ) ) |
| 39 | 18 38 | impbii | |- ( A. x ( ( f : NN --> H /\ f ~~>v x ) -> x e. H ) <-> ( f e. Cauchy -> ( f : NN --> H -> E. x e. H f ~~>v x ) ) ) |
| 40 | 39 | albii | |- ( A. f A. x ( ( f : NN --> H /\ f ~~>v x ) -> x e. H ) <-> A. f ( f e. Cauchy -> ( f : NN --> H -> E. x e. H f ~~>v x ) ) ) |
| 41 | df-ral | |- ( A. f e. Cauchy ( f : NN --> H -> E. x e. H f ~~>v x ) <-> A. f ( f e. Cauchy -> ( f : NN --> H -> E. x e. H f ~~>v x ) ) ) |
|
| 42 | 40 41 | bitr4i | |- ( A. f A. x ( ( f : NN --> H /\ f ~~>v x ) -> x e. H ) <-> A. f e. Cauchy ( f : NN --> H -> E. x e. H f ~~>v x ) ) |
| 43 | 42 | anbi2i | |- ( ( H e. SH /\ A. f A. x ( ( f : NN --> H /\ f ~~>v x ) -> x e. H ) ) <-> ( H e. SH /\ A. f e. Cauchy ( f : NN --> H -> E. x e. H f ~~>v x ) ) ) |
| 44 | 1 43 | bitri | |- ( H e. CH <-> ( H e. SH /\ A. f e. Cauchy ( f : NN --> H -> E. x e. H f ~~>v x ) ) ) |