This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The predicate "is an atom". ( elat2 analog.) (Contributed by NM, 27-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isat3.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| isat3.l | ⊢ ≤ = ( le ‘ 𝐾 ) | ||
| isat3.z | ⊢ 0 = ( 0. ‘ 𝐾 ) | ||
| isat3.a | ⊢ 𝐴 = ( Atoms ‘ 𝐾 ) | ||
| Assertion | isat3 | ⊢ ( 𝐾 ∈ AtLat → ( 𝑃 ∈ 𝐴 ↔ ( 𝑃 ∈ 𝐵 ∧ 𝑃 ≠ 0 ∧ ∀ 𝑥 ∈ 𝐵 ( 𝑥 ≤ 𝑃 → ( 𝑥 = 𝑃 ∨ 𝑥 = 0 ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isat3.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| 2 | isat3.l | ⊢ ≤ = ( le ‘ 𝐾 ) | |
| 3 | isat3.z | ⊢ 0 = ( 0. ‘ 𝐾 ) | |
| 4 | isat3.a | ⊢ 𝐴 = ( Atoms ‘ 𝐾 ) | |
| 5 | eqid | ⊢ ( ⋖ ‘ 𝐾 ) = ( ⋖ ‘ 𝐾 ) | |
| 6 | 1 3 5 4 | isat | ⊢ ( 𝐾 ∈ AtLat → ( 𝑃 ∈ 𝐴 ↔ ( 𝑃 ∈ 𝐵 ∧ 0 ( ⋖ ‘ 𝐾 ) 𝑃 ) ) ) |
| 7 | simpl | ⊢ ( ( 𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐵 ) → 𝐾 ∈ AtLat ) | |
| 8 | 1 3 | atl0cl | ⊢ ( 𝐾 ∈ AtLat → 0 ∈ 𝐵 ) |
| 9 | 8 | adantr | ⊢ ( ( 𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐵 ) → 0 ∈ 𝐵 ) |
| 10 | simpr | ⊢ ( ( 𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐵 ) → 𝑃 ∈ 𝐵 ) | |
| 11 | eqid | ⊢ ( lt ‘ 𝐾 ) = ( lt ‘ 𝐾 ) | |
| 12 | 1 2 11 5 | cvrval2 | ⊢ ( ( 𝐾 ∈ AtLat ∧ 0 ∈ 𝐵 ∧ 𝑃 ∈ 𝐵 ) → ( 0 ( ⋖ ‘ 𝐾 ) 𝑃 ↔ ( 0 ( lt ‘ 𝐾 ) 𝑃 ∧ ∀ 𝑥 ∈ 𝐵 ( ( 0 ( lt ‘ 𝐾 ) 𝑥 ∧ 𝑥 ≤ 𝑃 ) → 𝑥 = 𝑃 ) ) ) ) |
| 13 | 7 9 10 12 | syl3anc | ⊢ ( ( 𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐵 ) → ( 0 ( ⋖ ‘ 𝐾 ) 𝑃 ↔ ( 0 ( lt ‘ 𝐾 ) 𝑃 ∧ ∀ 𝑥 ∈ 𝐵 ( ( 0 ( lt ‘ 𝐾 ) 𝑥 ∧ 𝑥 ≤ 𝑃 ) → 𝑥 = 𝑃 ) ) ) ) |
| 14 | 1 11 3 | atlltn0 | ⊢ ( ( 𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐵 ) → ( 0 ( lt ‘ 𝐾 ) 𝑃 ↔ 𝑃 ≠ 0 ) ) |
| 15 | 1 11 3 | atlltn0 | ⊢ ( ( 𝐾 ∈ AtLat ∧ 𝑥 ∈ 𝐵 ) → ( 0 ( lt ‘ 𝐾 ) 𝑥 ↔ 𝑥 ≠ 0 ) ) |
| 16 | 15 | adantlr | ⊢ ( ( ( 𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝐵 ) → ( 0 ( lt ‘ 𝐾 ) 𝑥 ↔ 𝑥 ≠ 0 ) ) |
| 17 | 16 | imbi1d | ⊢ ( ( ( 𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝐵 ) → ( ( 0 ( lt ‘ 𝐾 ) 𝑥 → 𝑥 = 𝑃 ) ↔ ( 𝑥 ≠ 0 → 𝑥 = 𝑃 ) ) ) |
| 18 | 17 | imbi2d | ⊢ ( ( ( 𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝐵 ) → ( ( 𝑥 ≤ 𝑃 → ( 0 ( lt ‘ 𝐾 ) 𝑥 → 𝑥 = 𝑃 ) ) ↔ ( 𝑥 ≤ 𝑃 → ( 𝑥 ≠ 0 → 𝑥 = 𝑃 ) ) ) ) |
| 19 | impexp | ⊢ ( ( ( 0 ( lt ‘ 𝐾 ) 𝑥 ∧ 𝑥 ≤ 𝑃 ) → 𝑥 = 𝑃 ) ↔ ( 0 ( lt ‘ 𝐾 ) 𝑥 → ( 𝑥 ≤ 𝑃 → 𝑥 = 𝑃 ) ) ) | |
| 20 | bi2.04 | ⊢ ( ( 0 ( lt ‘ 𝐾 ) 𝑥 → ( 𝑥 ≤ 𝑃 → 𝑥 = 𝑃 ) ) ↔ ( 𝑥 ≤ 𝑃 → ( 0 ( lt ‘ 𝐾 ) 𝑥 → 𝑥 = 𝑃 ) ) ) | |
| 21 | 19 20 | bitri | ⊢ ( ( ( 0 ( lt ‘ 𝐾 ) 𝑥 ∧ 𝑥 ≤ 𝑃 ) → 𝑥 = 𝑃 ) ↔ ( 𝑥 ≤ 𝑃 → ( 0 ( lt ‘ 𝐾 ) 𝑥 → 𝑥 = 𝑃 ) ) ) |
| 22 | orcom | ⊢ ( ( 𝑥 = 𝑃 ∨ 𝑥 = 0 ) ↔ ( 𝑥 = 0 ∨ 𝑥 = 𝑃 ) ) | |
| 23 | neor | ⊢ ( ( 𝑥 = 0 ∨ 𝑥 = 𝑃 ) ↔ ( 𝑥 ≠ 0 → 𝑥 = 𝑃 ) ) | |
| 24 | 22 23 | bitri | ⊢ ( ( 𝑥 = 𝑃 ∨ 𝑥 = 0 ) ↔ ( 𝑥 ≠ 0 → 𝑥 = 𝑃 ) ) |
| 25 | 24 | imbi2i | ⊢ ( ( 𝑥 ≤ 𝑃 → ( 𝑥 = 𝑃 ∨ 𝑥 = 0 ) ) ↔ ( 𝑥 ≤ 𝑃 → ( 𝑥 ≠ 0 → 𝑥 = 𝑃 ) ) ) |
| 26 | 18 21 25 | 3bitr4g | ⊢ ( ( ( 𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝐵 ) → ( ( ( 0 ( lt ‘ 𝐾 ) 𝑥 ∧ 𝑥 ≤ 𝑃 ) → 𝑥 = 𝑃 ) ↔ ( 𝑥 ≤ 𝑃 → ( 𝑥 = 𝑃 ∨ 𝑥 = 0 ) ) ) ) |
| 27 | 26 | ralbidva | ⊢ ( ( 𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐵 ) → ( ∀ 𝑥 ∈ 𝐵 ( ( 0 ( lt ‘ 𝐾 ) 𝑥 ∧ 𝑥 ≤ 𝑃 ) → 𝑥 = 𝑃 ) ↔ ∀ 𝑥 ∈ 𝐵 ( 𝑥 ≤ 𝑃 → ( 𝑥 = 𝑃 ∨ 𝑥 = 0 ) ) ) ) |
| 28 | 14 27 | anbi12d | ⊢ ( ( 𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐵 ) → ( ( 0 ( lt ‘ 𝐾 ) 𝑃 ∧ ∀ 𝑥 ∈ 𝐵 ( ( 0 ( lt ‘ 𝐾 ) 𝑥 ∧ 𝑥 ≤ 𝑃 ) → 𝑥 = 𝑃 ) ) ↔ ( 𝑃 ≠ 0 ∧ ∀ 𝑥 ∈ 𝐵 ( 𝑥 ≤ 𝑃 → ( 𝑥 = 𝑃 ∨ 𝑥 = 0 ) ) ) ) ) |
| 29 | 13 28 | bitr2d | ⊢ ( ( 𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐵 ) → ( ( 𝑃 ≠ 0 ∧ ∀ 𝑥 ∈ 𝐵 ( 𝑥 ≤ 𝑃 → ( 𝑥 = 𝑃 ∨ 𝑥 = 0 ) ) ) ↔ 0 ( ⋖ ‘ 𝐾 ) 𝑃 ) ) |
| 30 | 29 | pm5.32da | ⊢ ( 𝐾 ∈ AtLat → ( ( 𝑃 ∈ 𝐵 ∧ ( 𝑃 ≠ 0 ∧ ∀ 𝑥 ∈ 𝐵 ( 𝑥 ≤ 𝑃 → ( 𝑥 = 𝑃 ∨ 𝑥 = 0 ) ) ) ) ↔ ( 𝑃 ∈ 𝐵 ∧ 0 ( ⋖ ‘ 𝐾 ) 𝑃 ) ) ) |
| 31 | 6 30 | bitr4d | ⊢ ( 𝐾 ∈ AtLat → ( 𝑃 ∈ 𝐴 ↔ ( 𝑃 ∈ 𝐵 ∧ ( 𝑃 ≠ 0 ∧ ∀ 𝑥 ∈ 𝐵 ( 𝑥 ≤ 𝑃 → ( 𝑥 = 𝑃 ∨ 𝑥 = 0 ) ) ) ) ) ) |
| 32 | 3anass | ⊢ ( ( 𝑃 ∈ 𝐵 ∧ 𝑃 ≠ 0 ∧ ∀ 𝑥 ∈ 𝐵 ( 𝑥 ≤ 𝑃 → ( 𝑥 = 𝑃 ∨ 𝑥 = 0 ) ) ) ↔ ( 𝑃 ∈ 𝐵 ∧ ( 𝑃 ≠ 0 ∧ ∀ 𝑥 ∈ 𝐵 ( 𝑥 ≤ 𝑃 → ( 𝑥 = 𝑃 ∨ 𝑥 = 0 ) ) ) ) ) | |
| 33 | 31 32 | bitr4di | ⊢ ( 𝐾 ∈ AtLat → ( 𝑃 ∈ 𝐴 ↔ ( 𝑃 ∈ 𝐵 ∧ 𝑃 ≠ 0 ∧ ∀ 𝑥 ∈ 𝐵 ( 𝑥 ≤ 𝑃 → ( 𝑥 = 𝑃 ∨ 𝑥 = 0 ) ) ) ) ) |