This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A lattice element greater than zero is nonzero. (Contributed by NM, 1-Jun-2012)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | atlltne0.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| atlltne0.s | ⊢ < = ( lt ‘ 𝐾 ) | ||
| atlltne0.z | ⊢ 0 = ( 0. ‘ 𝐾 ) | ||
| Assertion | atlltn0 | ⊢ ( ( 𝐾 ∈ AtLat ∧ 𝑋 ∈ 𝐵 ) → ( 0 < 𝑋 ↔ 𝑋 ≠ 0 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | atlltne0.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| 2 | atlltne0.s | ⊢ < = ( lt ‘ 𝐾 ) | |
| 3 | atlltne0.z | ⊢ 0 = ( 0. ‘ 𝐾 ) | |
| 4 | simpl | ⊢ ( ( 𝐾 ∈ AtLat ∧ 𝑋 ∈ 𝐵 ) → 𝐾 ∈ AtLat ) | |
| 5 | 1 3 | atl0cl | ⊢ ( 𝐾 ∈ AtLat → 0 ∈ 𝐵 ) |
| 6 | 5 | adantr | ⊢ ( ( 𝐾 ∈ AtLat ∧ 𝑋 ∈ 𝐵 ) → 0 ∈ 𝐵 ) |
| 7 | simpr | ⊢ ( ( 𝐾 ∈ AtLat ∧ 𝑋 ∈ 𝐵 ) → 𝑋 ∈ 𝐵 ) | |
| 8 | eqid | ⊢ ( le ‘ 𝐾 ) = ( le ‘ 𝐾 ) | |
| 9 | 8 2 | pltval | ⊢ ( ( 𝐾 ∈ AtLat ∧ 0 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) → ( 0 < 𝑋 ↔ ( 0 ( le ‘ 𝐾 ) 𝑋 ∧ 0 ≠ 𝑋 ) ) ) |
| 10 | 4 6 7 9 | syl3anc | ⊢ ( ( 𝐾 ∈ AtLat ∧ 𝑋 ∈ 𝐵 ) → ( 0 < 𝑋 ↔ ( 0 ( le ‘ 𝐾 ) 𝑋 ∧ 0 ≠ 𝑋 ) ) ) |
| 11 | necom | ⊢ ( 𝑋 ≠ 0 ↔ 0 ≠ 𝑋 ) | |
| 12 | 1 8 3 | atl0le | ⊢ ( ( 𝐾 ∈ AtLat ∧ 𝑋 ∈ 𝐵 ) → 0 ( le ‘ 𝐾 ) 𝑋 ) |
| 13 | 12 | biantrurd | ⊢ ( ( 𝐾 ∈ AtLat ∧ 𝑋 ∈ 𝐵 ) → ( 0 ≠ 𝑋 ↔ ( 0 ( le ‘ 𝐾 ) 𝑋 ∧ 0 ≠ 𝑋 ) ) ) |
| 14 | 11 13 | bitr2id | ⊢ ( ( 𝐾 ∈ AtLat ∧ 𝑋 ∈ 𝐵 ) → ( ( 0 ( le ‘ 𝐾 ) 𝑋 ∧ 0 ≠ 𝑋 ) ↔ 𝑋 ≠ 0 ) ) |
| 15 | 10 14 | bitrd | ⊢ ( ( 𝐾 ∈ AtLat ∧ 𝑋 ∈ 𝐵 ) → ( 0 < 𝑋 ↔ 𝑋 ≠ 0 ) ) |