This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Binary relation expressing Y covers X . Definition of covers in Kalmbach p. 15. ( cvbr2 analog.) (Contributed by NM, 16-Nov-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cvrletr.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| cvrletr.l | ⊢ ≤ = ( le ‘ 𝐾 ) | ||
| cvrletr.s | ⊢ < = ( lt ‘ 𝐾 ) | ||
| cvrletr.c | ⊢ 𝐶 = ( ⋖ ‘ 𝐾 ) | ||
| Assertion | cvrval2 | ⊢ ( ( 𝐾 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 𝐶 𝑌 ↔ ( 𝑋 < 𝑌 ∧ ∀ 𝑧 ∈ 𝐵 ( ( 𝑋 < 𝑧 ∧ 𝑧 ≤ 𝑌 ) → 𝑧 = 𝑌 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cvrletr.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| 2 | cvrletr.l | ⊢ ≤ = ( le ‘ 𝐾 ) | |
| 3 | cvrletr.s | ⊢ < = ( lt ‘ 𝐾 ) | |
| 4 | cvrletr.c | ⊢ 𝐶 = ( ⋖ ‘ 𝐾 ) | |
| 5 | 1 3 4 | cvrval | ⊢ ( ( 𝐾 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 𝐶 𝑌 ↔ ( 𝑋 < 𝑌 ∧ ¬ ∃ 𝑧 ∈ 𝐵 ( 𝑋 < 𝑧 ∧ 𝑧 < 𝑌 ) ) ) ) |
| 6 | iman | ⊢ ( ( ( 𝑋 < 𝑧 ∧ 𝑧 ≤ 𝑌 ) → 𝑧 = 𝑌 ) ↔ ¬ ( ( 𝑋 < 𝑧 ∧ 𝑧 ≤ 𝑌 ) ∧ ¬ 𝑧 = 𝑌 ) ) | |
| 7 | df-ne | ⊢ ( 𝑧 ≠ 𝑌 ↔ ¬ 𝑧 = 𝑌 ) | |
| 8 | 7 | anbi2i | ⊢ ( ( ( 𝑋 < 𝑧 ∧ 𝑧 ≤ 𝑌 ) ∧ 𝑧 ≠ 𝑌 ) ↔ ( ( 𝑋 < 𝑧 ∧ 𝑧 ≤ 𝑌 ) ∧ ¬ 𝑧 = 𝑌 ) ) |
| 9 | 6 8 | xchbinxr | ⊢ ( ( ( 𝑋 < 𝑧 ∧ 𝑧 ≤ 𝑌 ) → 𝑧 = 𝑌 ) ↔ ¬ ( ( 𝑋 < 𝑧 ∧ 𝑧 ≤ 𝑌 ) ∧ 𝑧 ≠ 𝑌 ) ) |
| 10 | anass | ⊢ ( ( ( 𝑋 < 𝑧 ∧ 𝑧 ≤ 𝑌 ) ∧ 𝑧 ≠ 𝑌 ) ↔ ( 𝑋 < 𝑧 ∧ ( 𝑧 ≤ 𝑌 ∧ 𝑧 ≠ 𝑌 ) ) ) | |
| 11 | 2 3 | pltval | ⊢ ( ( 𝐾 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑧 < 𝑌 ↔ ( 𝑧 ≤ 𝑌 ∧ 𝑧 ≠ 𝑌 ) ) ) |
| 12 | 11 | 3com23 | ⊢ ( ( 𝐾 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) → ( 𝑧 < 𝑌 ↔ ( 𝑧 ≤ 𝑌 ∧ 𝑧 ≠ 𝑌 ) ) ) |
| 13 | 12 | 3expa | ⊢ ( ( ( 𝐾 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑧 ∈ 𝐵 ) → ( 𝑧 < 𝑌 ↔ ( 𝑧 ≤ 𝑌 ∧ 𝑧 ≠ 𝑌 ) ) ) |
| 14 | 13 | anbi2d | ⊢ ( ( ( 𝐾 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑧 ∈ 𝐵 ) → ( ( 𝑋 < 𝑧 ∧ 𝑧 < 𝑌 ) ↔ ( 𝑋 < 𝑧 ∧ ( 𝑧 ≤ 𝑌 ∧ 𝑧 ≠ 𝑌 ) ) ) ) |
| 15 | 10 14 | bitr4id | ⊢ ( ( ( 𝐾 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑧 ∈ 𝐵 ) → ( ( ( 𝑋 < 𝑧 ∧ 𝑧 ≤ 𝑌 ) ∧ 𝑧 ≠ 𝑌 ) ↔ ( 𝑋 < 𝑧 ∧ 𝑧 < 𝑌 ) ) ) |
| 16 | 15 | notbid | ⊢ ( ( ( 𝐾 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑧 ∈ 𝐵 ) → ( ¬ ( ( 𝑋 < 𝑧 ∧ 𝑧 ≤ 𝑌 ) ∧ 𝑧 ≠ 𝑌 ) ↔ ¬ ( 𝑋 < 𝑧 ∧ 𝑧 < 𝑌 ) ) ) |
| 17 | 9 16 | bitrid | ⊢ ( ( ( 𝐾 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑧 ∈ 𝐵 ) → ( ( ( 𝑋 < 𝑧 ∧ 𝑧 ≤ 𝑌 ) → 𝑧 = 𝑌 ) ↔ ¬ ( 𝑋 < 𝑧 ∧ 𝑧 < 𝑌 ) ) ) |
| 18 | 17 | ralbidva | ⊢ ( ( 𝐾 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ) → ( ∀ 𝑧 ∈ 𝐵 ( ( 𝑋 < 𝑧 ∧ 𝑧 ≤ 𝑌 ) → 𝑧 = 𝑌 ) ↔ ∀ 𝑧 ∈ 𝐵 ¬ ( 𝑋 < 𝑧 ∧ 𝑧 < 𝑌 ) ) ) |
| 19 | ralnex | ⊢ ( ∀ 𝑧 ∈ 𝐵 ¬ ( 𝑋 < 𝑧 ∧ 𝑧 < 𝑌 ) ↔ ¬ ∃ 𝑧 ∈ 𝐵 ( 𝑋 < 𝑧 ∧ 𝑧 < 𝑌 ) ) | |
| 20 | 18 19 | bitrdi | ⊢ ( ( 𝐾 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ) → ( ∀ 𝑧 ∈ 𝐵 ( ( 𝑋 < 𝑧 ∧ 𝑧 ≤ 𝑌 ) → 𝑧 = 𝑌 ) ↔ ¬ ∃ 𝑧 ∈ 𝐵 ( 𝑋 < 𝑧 ∧ 𝑧 < 𝑌 ) ) ) |
| 21 | 20 | anbi2d | ⊢ ( ( 𝐾 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ) → ( ( 𝑋 < 𝑌 ∧ ∀ 𝑧 ∈ 𝐵 ( ( 𝑋 < 𝑧 ∧ 𝑧 ≤ 𝑌 ) → 𝑧 = 𝑌 ) ) ↔ ( 𝑋 < 𝑌 ∧ ¬ ∃ 𝑧 ∈ 𝐵 ( 𝑋 < 𝑧 ∧ 𝑧 < 𝑌 ) ) ) ) |
| 22 | 21 | 3adant2 | ⊢ ( ( 𝐾 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( 𝑋 < 𝑌 ∧ ∀ 𝑧 ∈ 𝐵 ( ( 𝑋 < 𝑧 ∧ 𝑧 ≤ 𝑌 ) → 𝑧 = 𝑌 ) ) ↔ ( 𝑋 < 𝑌 ∧ ¬ ∃ 𝑧 ∈ 𝐵 ( 𝑋 < 𝑧 ∧ 𝑧 < 𝑌 ) ) ) ) |
| 23 | 5 22 | bitr4d | ⊢ ( ( 𝐾 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 𝐶 𝑌 ↔ ( 𝑋 < 𝑌 ∧ ∀ 𝑧 ∈ 𝐵 ( ( 𝑋 < 𝑧 ∧ 𝑧 ≤ 𝑌 ) → 𝑧 = 𝑌 ) ) ) ) |