This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The predicate "is an atom". ( elat2 analog.) (Contributed by NM, 27-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isat3.b | |- B = ( Base ` K ) |
|
| isat3.l | |- .<_ = ( le ` K ) |
||
| isat3.z | |- .0. = ( 0. ` K ) |
||
| isat3.a | |- A = ( Atoms ` K ) |
||
| Assertion | isat3 | |- ( K e. AtLat -> ( P e. A <-> ( P e. B /\ P =/= .0. /\ A. x e. B ( x .<_ P -> ( x = P \/ x = .0. ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isat3.b | |- B = ( Base ` K ) |
|
| 2 | isat3.l | |- .<_ = ( le ` K ) |
|
| 3 | isat3.z | |- .0. = ( 0. ` K ) |
|
| 4 | isat3.a | |- A = ( Atoms ` K ) |
|
| 5 | eqid | |- ( |
|
| 6 | 1 3 5 4 | isat | |- ( K e. AtLat -> ( P e. A <-> ( P e. B /\ .0. ( |
| 7 | simpl | |- ( ( K e. AtLat /\ P e. B ) -> K e. AtLat ) |
|
| 8 | 1 3 | atl0cl | |- ( K e. AtLat -> .0. e. B ) |
| 9 | 8 | adantr | |- ( ( K e. AtLat /\ P e. B ) -> .0. e. B ) |
| 10 | simpr | |- ( ( K e. AtLat /\ P e. B ) -> P e. B ) |
|
| 11 | eqid | |- ( lt ` K ) = ( lt ` K ) |
|
| 12 | 1 2 11 5 | cvrval2 | |- ( ( K e. AtLat /\ .0. e. B /\ P e. B ) -> ( .0. ( |
| 13 | 7 9 10 12 | syl3anc | |- ( ( K e. AtLat /\ P e. B ) -> ( .0. ( |
| 14 | 1 11 3 | atlltn0 | |- ( ( K e. AtLat /\ P e. B ) -> ( .0. ( lt ` K ) P <-> P =/= .0. ) ) |
| 15 | 1 11 3 | atlltn0 | |- ( ( K e. AtLat /\ x e. B ) -> ( .0. ( lt ` K ) x <-> x =/= .0. ) ) |
| 16 | 15 | adantlr | |- ( ( ( K e. AtLat /\ P e. B ) /\ x e. B ) -> ( .0. ( lt ` K ) x <-> x =/= .0. ) ) |
| 17 | 16 | imbi1d | |- ( ( ( K e. AtLat /\ P e. B ) /\ x e. B ) -> ( ( .0. ( lt ` K ) x -> x = P ) <-> ( x =/= .0. -> x = P ) ) ) |
| 18 | 17 | imbi2d | |- ( ( ( K e. AtLat /\ P e. B ) /\ x e. B ) -> ( ( x .<_ P -> ( .0. ( lt ` K ) x -> x = P ) ) <-> ( x .<_ P -> ( x =/= .0. -> x = P ) ) ) ) |
| 19 | impexp | |- ( ( ( .0. ( lt ` K ) x /\ x .<_ P ) -> x = P ) <-> ( .0. ( lt ` K ) x -> ( x .<_ P -> x = P ) ) ) |
|
| 20 | bi2.04 | |- ( ( .0. ( lt ` K ) x -> ( x .<_ P -> x = P ) ) <-> ( x .<_ P -> ( .0. ( lt ` K ) x -> x = P ) ) ) |
|
| 21 | 19 20 | bitri | |- ( ( ( .0. ( lt ` K ) x /\ x .<_ P ) -> x = P ) <-> ( x .<_ P -> ( .0. ( lt ` K ) x -> x = P ) ) ) |
| 22 | orcom | |- ( ( x = P \/ x = .0. ) <-> ( x = .0. \/ x = P ) ) |
|
| 23 | neor | |- ( ( x = .0. \/ x = P ) <-> ( x =/= .0. -> x = P ) ) |
|
| 24 | 22 23 | bitri | |- ( ( x = P \/ x = .0. ) <-> ( x =/= .0. -> x = P ) ) |
| 25 | 24 | imbi2i | |- ( ( x .<_ P -> ( x = P \/ x = .0. ) ) <-> ( x .<_ P -> ( x =/= .0. -> x = P ) ) ) |
| 26 | 18 21 25 | 3bitr4g | |- ( ( ( K e. AtLat /\ P e. B ) /\ x e. B ) -> ( ( ( .0. ( lt ` K ) x /\ x .<_ P ) -> x = P ) <-> ( x .<_ P -> ( x = P \/ x = .0. ) ) ) ) |
| 27 | 26 | ralbidva | |- ( ( K e. AtLat /\ P e. B ) -> ( A. x e. B ( ( .0. ( lt ` K ) x /\ x .<_ P ) -> x = P ) <-> A. x e. B ( x .<_ P -> ( x = P \/ x = .0. ) ) ) ) |
| 28 | 14 27 | anbi12d | |- ( ( K e. AtLat /\ P e. B ) -> ( ( .0. ( lt ` K ) P /\ A. x e. B ( ( .0. ( lt ` K ) x /\ x .<_ P ) -> x = P ) ) <-> ( P =/= .0. /\ A. x e. B ( x .<_ P -> ( x = P \/ x = .0. ) ) ) ) ) |
| 29 | 13 28 | bitr2d | |- ( ( K e. AtLat /\ P e. B ) -> ( ( P =/= .0. /\ A. x e. B ( x .<_ P -> ( x = P \/ x = .0. ) ) ) <-> .0. ( |
| 30 | 29 | pm5.32da | |- ( K e. AtLat -> ( ( P e. B /\ ( P =/= .0. /\ A. x e. B ( x .<_ P -> ( x = P \/ x = .0. ) ) ) ) <-> ( P e. B /\ .0. ( |
| 31 | 6 30 | bitr4d | |- ( K e. AtLat -> ( P e. A <-> ( P e. B /\ ( P =/= .0. /\ A. x e. B ( x .<_ P -> ( x = P \/ x = .0. ) ) ) ) ) ) |
| 32 | 3anass | |- ( ( P e. B /\ P =/= .0. /\ A. x e. B ( x .<_ P -> ( x = P \/ x = .0. ) ) ) <-> ( P e. B /\ ( P =/= .0. /\ A. x e. B ( x .<_ P -> ( x = P \/ x = .0. ) ) ) ) ) |
|
| 33 | 31 32 | bitr4di | |- ( K e. AtLat -> ( P e. A <-> ( P e. B /\ P =/= .0. /\ A. x e. B ( x .<_ P -> ( x = P \/ x = .0. ) ) ) ) ) |