This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Expanded membership relation for the set of atoms, i.e. the predicate "is an atom (of the Hilbert lattice)." An atom is a nonzero element of a lattice such that anything less than it is zero, i.e. it is the smallest nonzero element of the lattice. (Contributed by NM, 9-Jun-2004) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elat2 | ⊢ ( 𝐴 ∈ HAtoms ↔ ( 𝐴 ∈ Cℋ ∧ ( 𝐴 ≠ 0ℋ ∧ ∀ 𝑥 ∈ Cℋ ( 𝑥 ⊆ 𝐴 → ( 𝑥 = 𝐴 ∨ 𝑥 = 0ℋ ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ela | ⊢ ( 𝐴 ∈ HAtoms ↔ ( 𝐴 ∈ Cℋ ∧ 0ℋ ⋖ℋ 𝐴 ) ) | |
| 2 | h0elch | ⊢ 0ℋ ∈ Cℋ | |
| 3 | cvbr2 | ⊢ ( ( 0ℋ ∈ Cℋ ∧ 𝐴 ∈ Cℋ ) → ( 0ℋ ⋖ℋ 𝐴 ↔ ( 0ℋ ⊊ 𝐴 ∧ ∀ 𝑥 ∈ Cℋ ( ( 0ℋ ⊊ 𝑥 ∧ 𝑥 ⊆ 𝐴 ) → 𝑥 = 𝐴 ) ) ) ) | |
| 4 | 2 3 | mpan | ⊢ ( 𝐴 ∈ Cℋ → ( 0ℋ ⋖ℋ 𝐴 ↔ ( 0ℋ ⊊ 𝐴 ∧ ∀ 𝑥 ∈ Cℋ ( ( 0ℋ ⊊ 𝑥 ∧ 𝑥 ⊆ 𝐴 ) → 𝑥 = 𝐴 ) ) ) ) |
| 5 | ch0pss | ⊢ ( 𝐴 ∈ Cℋ → ( 0ℋ ⊊ 𝐴 ↔ 𝐴 ≠ 0ℋ ) ) | |
| 6 | ch0pss | ⊢ ( 𝑥 ∈ Cℋ → ( 0ℋ ⊊ 𝑥 ↔ 𝑥 ≠ 0ℋ ) ) | |
| 7 | 6 | imbi1d | ⊢ ( 𝑥 ∈ Cℋ → ( ( 0ℋ ⊊ 𝑥 → 𝑥 = 𝐴 ) ↔ ( 𝑥 ≠ 0ℋ → 𝑥 = 𝐴 ) ) ) |
| 8 | 7 | imbi2d | ⊢ ( 𝑥 ∈ Cℋ → ( ( 𝑥 ⊆ 𝐴 → ( 0ℋ ⊊ 𝑥 → 𝑥 = 𝐴 ) ) ↔ ( 𝑥 ⊆ 𝐴 → ( 𝑥 ≠ 0ℋ → 𝑥 = 𝐴 ) ) ) ) |
| 9 | impexp | ⊢ ( ( ( 0ℋ ⊊ 𝑥 ∧ 𝑥 ⊆ 𝐴 ) → 𝑥 = 𝐴 ) ↔ ( 0ℋ ⊊ 𝑥 → ( 𝑥 ⊆ 𝐴 → 𝑥 = 𝐴 ) ) ) | |
| 10 | bi2.04 | ⊢ ( ( 0ℋ ⊊ 𝑥 → ( 𝑥 ⊆ 𝐴 → 𝑥 = 𝐴 ) ) ↔ ( 𝑥 ⊆ 𝐴 → ( 0ℋ ⊊ 𝑥 → 𝑥 = 𝐴 ) ) ) | |
| 11 | 9 10 | bitri | ⊢ ( ( ( 0ℋ ⊊ 𝑥 ∧ 𝑥 ⊆ 𝐴 ) → 𝑥 = 𝐴 ) ↔ ( 𝑥 ⊆ 𝐴 → ( 0ℋ ⊊ 𝑥 → 𝑥 = 𝐴 ) ) ) |
| 12 | orcom | ⊢ ( ( 𝑥 = 𝐴 ∨ 𝑥 = 0ℋ ) ↔ ( 𝑥 = 0ℋ ∨ 𝑥 = 𝐴 ) ) | |
| 13 | neor | ⊢ ( ( 𝑥 = 0ℋ ∨ 𝑥 = 𝐴 ) ↔ ( 𝑥 ≠ 0ℋ → 𝑥 = 𝐴 ) ) | |
| 14 | 12 13 | bitri | ⊢ ( ( 𝑥 = 𝐴 ∨ 𝑥 = 0ℋ ) ↔ ( 𝑥 ≠ 0ℋ → 𝑥 = 𝐴 ) ) |
| 15 | 14 | imbi2i | ⊢ ( ( 𝑥 ⊆ 𝐴 → ( 𝑥 = 𝐴 ∨ 𝑥 = 0ℋ ) ) ↔ ( 𝑥 ⊆ 𝐴 → ( 𝑥 ≠ 0ℋ → 𝑥 = 𝐴 ) ) ) |
| 16 | 8 11 15 | 3bitr4g | ⊢ ( 𝑥 ∈ Cℋ → ( ( ( 0ℋ ⊊ 𝑥 ∧ 𝑥 ⊆ 𝐴 ) → 𝑥 = 𝐴 ) ↔ ( 𝑥 ⊆ 𝐴 → ( 𝑥 = 𝐴 ∨ 𝑥 = 0ℋ ) ) ) ) |
| 17 | 16 | ralbiia | ⊢ ( ∀ 𝑥 ∈ Cℋ ( ( 0ℋ ⊊ 𝑥 ∧ 𝑥 ⊆ 𝐴 ) → 𝑥 = 𝐴 ) ↔ ∀ 𝑥 ∈ Cℋ ( 𝑥 ⊆ 𝐴 → ( 𝑥 = 𝐴 ∨ 𝑥 = 0ℋ ) ) ) |
| 18 | 17 | a1i | ⊢ ( 𝐴 ∈ Cℋ → ( ∀ 𝑥 ∈ Cℋ ( ( 0ℋ ⊊ 𝑥 ∧ 𝑥 ⊆ 𝐴 ) → 𝑥 = 𝐴 ) ↔ ∀ 𝑥 ∈ Cℋ ( 𝑥 ⊆ 𝐴 → ( 𝑥 = 𝐴 ∨ 𝑥 = 0ℋ ) ) ) ) |
| 19 | 5 18 | anbi12d | ⊢ ( 𝐴 ∈ Cℋ → ( ( 0ℋ ⊊ 𝐴 ∧ ∀ 𝑥 ∈ Cℋ ( ( 0ℋ ⊊ 𝑥 ∧ 𝑥 ⊆ 𝐴 ) → 𝑥 = 𝐴 ) ) ↔ ( 𝐴 ≠ 0ℋ ∧ ∀ 𝑥 ∈ Cℋ ( 𝑥 ⊆ 𝐴 → ( 𝑥 = 𝐴 ∨ 𝑥 = 0ℋ ) ) ) ) ) |
| 20 | 4 19 | bitr2d | ⊢ ( 𝐴 ∈ Cℋ → ( ( 𝐴 ≠ 0ℋ ∧ ∀ 𝑥 ∈ Cℋ ( 𝑥 ⊆ 𝐴 → ( 𝑥 = 𝐴 ∨ 𝑥 = 0ℋ ) ) ) ↔ 0ℋ ⋖ℋ 𝐴 ) ) |
| 21 | 20 | pm5.32i | ⊢ ( ( 𝐴 ∈ Cℋ ∧ ( 𝐴 ≠ 0ℋ ∧ ∀ 𝑥 ∈ Cℋ ( 𝑥 ⊆ 𝐴 → ( 𝑥 = 𝐴 ∨ 𝑥 = 0ℋ ) ) ) ) ↔ ( 𝐴 ∈ Cℋ ∧ 0ℋ ⋖ℋ 𝐴 ) ) |
| 22 | 1 21 | bitr4i | ⊢ ( 𝐴 ∈ HAtoms ↔ ( 𝐴 ∈ Cℋ ∧ ( 𝐴 ≠ 0ℋ ∧ ∀ 𝑥 ∈ Cℋ ( 𝑥 ⊆ 𝐴 → ( 𝑥 = 𝐴 ∨ 𝑥 = 0ℋ ) ) ) ) ) |