This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the set of absolute values. (Contributed by Mario Carneiro, 8-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | abvfval.a | ⊢ 𝐴 = ( AbsVal ‘ 𝑅 ) | |
| abvfval.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | ||
| abvfval.p | ⊢ + = ( +g ‘ 𝑅 ) | ||
| abvfval.t | ⊢ · = ( .r ‘ 𝑅 ) | ||
| abvfval.z | ⊢ 0 = ( 0g ‘ 𝑅 ) | ||
| Assertion | abvfval | ⊢ ( 𝑅 ∈ Ring → 𝐴 = { 𝑓 ∈ ( ( 0 [,) +∞ ) ↑m 𝐵 ) ∣ ∀ 𝑥 ∈ 𝐵 ( ( ( 𝑓 ‘ 𝑥 ) = 0 ↔ 𝑥 = 0 ) ∧ ∀ 𝑦 ∈ 𝐵 ( ( 𝑓 ‘ ( 𝑥 · 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) · ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ ( 𝑥 + 𝑦 ) ) ≤ ( ( 𝑓 ‘ 𝑥 ) + ( 𝑓 ‘ 𝑦 ) ) ) ) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | abvfval.a | ⊢ 𝐴 = ( AbsVal ‘ 𝑅 ) | |
| 2 | abvfval.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| 3 | abvfval.p | ⊢ + = ( +g ‘ 𝑅 ) | |
| 4 | abvfval.t | ⊢ · = ( .r ‘ 𝑅 ) | |
| 5 | abvfval.z | ⊢ 0 = ( 0g ‘ 𝑅 ) | |
| 6 | fveq2 | ⊢ ( 𝑟 = 𝑅 → ( Base ‘ 𝑟 ) = ( Base ‘ 𝑅 ) ) | |
| 7 | 6 2 | eqtr4di | ⊢ ( 𝑟 = 𝑅 → ( Base ‘ 𝑟 ) = 𝐵 ) |
| 8 | 7 | oveq2d | ⊢ ( 𝑟 = 𝑅 → ( ( 0 [,) +∞ ) ↑m ( Base ‘ 𝑟 ) ) = ( ( 0 [,) +∞ ) ↑m 𝐵 ) ) |
| 9 | fveq2 | ⊢ ( 𝑟 = 𝑅 → ( 0g ‘ 𝑟 ) = ( 0g ‘ 𝑅 ) ) | |
| 10 | 9 5 | eqtr4di | ⊢ ( 𝑟 = 𝑅 → ( 0g ‘ 𝑟 ) = 0 ) |
| 11 | 10 | eqeq2d | ⊢ ( 𝑟 = 𝑅 → ( 𝑥 = ( 0g ‘ 𝑟 ) ↔ 𝑥 = 0 ) ) |
| 12 | 11 | bibi2d | ⊢ ( 𝑟 = 𝑅 → ( ( ( 𝑓 ‘ 𝑥 ) = 0 ↔ 𝑥 = ( 0g ‘ 𝑟 ) ) ↔ ( ( 𝑓 ‘ 𝑥 ) = 0 ↔ 𝑥 = 0 ) ) ) |
| 13 | fveq2 | ⊢ ( 𝑟 = 𝑅 → ( .r ‘ 𝑟 ) = ( .r ‘ 𝑅 ) ) | |
| 14 | 13 4 | eqtr4di | ⊢ ( 𝑟 = 𝑅 → ( .r ‘ 𝑟 ) = · ) |
| 15 | 14 | oveqd | ⊢ ( 𝑟 = 𝑅 → ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) = ( 𝑥 · 𝑦 ) ) |
| 16 | 15 | fveqeq2d | ⊢ ( 𝑟 = 𝑅 → ( ( 𝑓 ‘ ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) · ( 𝑓 ‘ 𝑦 ) ) ↔ ( 𝑓 ‘ ( 𝑥 · 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) · ( 𝑓 ‘ 𝑦 ) ) ) ) |
| 17 | fveq2 | ⊢ ( 𝑟 = 𝑅 → ( +g ‘ 𝑟 ) = ( +g ‘ 𝑅 ) ) | |
| 18 | 17 3 | eqtr4di | ⊢ ( 𝑟 = 𝑅 → ( +g ‘ 𝑟 ) = + ) |
| 19 | 18 | oveqd | ⊢ ( 𝑟 = 𝑅 → ( 𝑥 ( +g ‘ 𝑟 ) 𝑦 ) = ( 𝑥 + 𝑦 ) ) |
| 20 | 19 | fveq2d | ⊢ ( 𝑟 = 𝑅 → ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑟 ) 𝑦 ) ) = ( 𝑓 ‘ ( 𝑥 + 𝑦 ) ) ) |
| 21 | 20 | breq1d | ⊢ ( 𝑟 = 𝑅 → ( ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑟 ) 𝑦 ) ) ≤ ( ( 𝑓 ‘ 𝑥 ) + ( 𝑓 ‘ 𝑦 ) ) ↔ ( 𝑓 ‘ ( 𝑥 + 𝑦 ) ) ≤ ( ( 𝑓 ‘ 𝑥 ) + ( 𝑓 ‘ 𝑦 ) ) ) ) |
| 22 | 16 21 | anbi12d | ⊢ ( 𝑟 = 𝑅 → ( ( ( 𝑓 ‘ ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) · ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑟 ) 𝑦 ) ) ≤ ( ( 𝑓 ‘ 𝑥 ) + ( 𝑓 ‘ 𝑦 ) ) ) ↔ ( ( 𝑓 ‘ ( 𝑥 · 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) · ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ ( 𝑥 + 𝑦 ) ) ≤ ( ( 𝑓 ‘ 𝑥 ) + ( 𝑓 ‘ 𝑦 ) ) ) ) ) |
| 23 | 7 22 | raleqbidv | ⊢ ( 𝑟 = 𝑅 → ( ∀ 𝑦 ∈ ( Base ‘ 𝑟 ) ( ( 𝑓 ‘ ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) · ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑟 ) 𝑦 ) ) ≤ ( ( 𝑓 ‘ 𝑥 ) + ( 𝑓 ‘ 𝑦 ) ) ) ↔ ∀ 𝑦 ∈ 𝐵 ( ( 𝑓 ‘ ( 𝑥 · 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) · ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ ( 𝑥 + 𝑦 ) ) ≤ ( ( 𝑓 ‘ 𝑥 ) + ( 𝑓 ‘ 𝑦 ) ) ) ) ) |
| 24 | 12 23 | anbi12d | ⊢ ( 𝑟 = 𝑅 → ( ( ( ( 𝑓 ‘ 𝑥 ) = 0 ↔ 𝑥 = ( 0g ‘ 𝑟 ) ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝑟 ) ( ( 𝑓 ‘ ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) · ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑟 ) 𝑦 ) ) ≤ ( ( 𝑓 ‘ 𝑥 ) + ( 𝑓 ‘ 𝑦 ) ) ) ) ↔ ( ( ( 𝑓 ‘ 𝑥 ) = 0 ↔ 𝑥 = 0 ) ∧ ∀ 𝑦 ∈ 𝐵 ( ( 𝑓 ‘ ( 𝑥 · 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) · ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ ( 𝑥 + 𝑦 ) ) ≤ ( ( 𝑓 ‘ 𝑥 ) + ( 𝑓 ‘ 𝑦 ) ) ) ) ) ) |
| 25 | 7 24 | raleqbidv | ⊢ ( 𝑟 = 𝑅 → ( ∀ 𝑥 ∈ ( Base ‘ 𝑟 ) ( ( ( 𝑓 ‘ 𝑥 ) = 0 ↔ 𝑥 = ( 0g ‘ 𝑟 ) ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝑟 ) ( ( 𝑓 ‘ ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) · ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑟 ) 𝑦 ) ) ≤ ( ( 𝑓 ‘ 𝑥 ) + ( 𝑓 ‘ 𝑦 ) ) ) ) ↔ ∀ 𝑥 ∈ 𝐵 ( ( ( 𝑓 ‘ 𝑥 ) = 0 ↔ 𝑥 = 0 ) ∧ ∀ 𝑦 ∈ 𝐵 ( ( 𝑓 ‘ ( 𝑥 · 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) · ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ ( 𝑥 + 𝑦 ) ) ≤ ( ( 𝑓 ‘ 𝑥 ) + ( 𝑓 ‘ 𝑦 ) ) ) ) ) ) |
| 26 | 8 25 | rabeqbidv | ⊢ ( 𝑟 = 𝑅 → { 𝑓 ∈ ( ( 0 [,) +∞ ) ↑m ( Base ‘ 𝑟 ) ) ∣ ∀ 𝑥 ∈ ( Base ‘ 𝑟 ) ( ( ( 𝑓 ‘ 𝑥 ) = 0 ↔ 𝑥 = ( 0g ‘ 𝑟 ) ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝑟 ) ( ( 𝑓 ‘ ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) · ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑟 ) 𝑦 ) ) ≤ ( ( 𝑓 ‘ 𝑥 ) + ( 𝑓 ‘ 𝑦 ) ) ) ) } = { 𝑓 ∈ ( ( 0 [,) +∞ ) ↑m 𝐵 ) ∣ ∀ 𝑥 ∈ 𝐵 ( ( ( 𝑓 ‘ 𝑥 ) = 0 ↔ 𝑥 = 0 ) ∧ ∀ 𝑦 ∈ 𝐵 ( ( 𝑓 ‘ ( 𝑥 · 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) · ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ ( 𝑥 + 𝑦 ) ) ≤ ( ( 𝑓 ‘ 𝑥 ) + ( 𝑓 ‘ 𝑦 ) ) ) ) } ) |
| 27 | df-abv | ⊢ AbsVal = ( 𝑟 ∈ Ring ↦ { 𝑓 ∈ ( ( 0 [,) +∞ ) ↑m ( Base ‘ 𝑟 ) ) ∣ ∀ 𝑥 ∈ ( Base ‘ 𝑟 ) ( ( ( 𝑓 ‘ 𝑥 ) = 0 ↔ 𝑥 = ( 0g ‘ 𝑟 ) ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝑟 ) ( ( 𝑓 ‘ ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) · ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑟 ) 𝑦 ) ) ≤ ( ( 𝑓 ‘ 𝑥 ) + ( 𝑓 ‘ 𝑦 ) ) ) ) } ) | |
| 28 | ovex | ⊢ ( ( 0 [,) +∞ ) ↑m 𝐵 ) ∈ V | |
| 29 | 28 | rabex | ⊢ { 𝑓 ∈ ( ( 0 [,) +∞ ) ↑m 𝐵 ) ∣ ∀ 𝑥 ∈ 𝐵 ( ( ( 𝑓 ‘ 𝑥 ) = 0 ↔ 𝑥 = 0 ) ∧ ∀ 𝑦 ∈ 𝐵 ( ( 𝑓 ‘ ( 𝑥 · 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) · ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ ( 𝑥 + 𝑦 ) ) ≤ ( ( 𝑓 ‘ 𝑥 ) + ( 𝑓 ‘ 𝑦 ) ) ) ) } ∈ V |
| 30 | 26 27 29 | fvmpt | ⊢ ( 𝑅 ∈ Ring → ( AbsVal ‘ 𝑅 ) = { 𝑓 ∈ ( ( 0 [,) +∞ ) ↑m 𝐵 ) ∣ ∀ 𝑥 ∈ 𝐵 ( ( ( 𝑓 ‘ 𝑥 ) = 0 ↔ 𝑥 = 0 ) ∧ ∀ 𝑦 ∈ 𝐵 ( ( 𝑓 ‘ ( 𝑥 · 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) · ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ ( 𝑥 + 𝑦 ) ) ≤ ( ( 𝑓 ‘ 𝑥 ) + ( 𝑓 ‘ 𝑦 ) ) ) ) } ) |
| 31 | 1 30 | eqtrid | ⊢ ( 𝑅 ∈ Ring → 𝐴 = { 𝑓 ∈ ( ( 0 [,) +∞ ) ↑m 𝐵 ) ∣ ∀ 𝑥 ∈ 𝐵 ( ( ( 𝑓 ‘ 𝑥 ) = 0 ↔ 𝑥 = 0 ) ∧ ∀ 𝑦 ∈ 𝐵 ( ( 𝑓 ‘ ( 𝑥 · 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) · ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ ( 𝑥 + 𝑦 ) ) ≤ ( ( 𝑓 ‘ 𝑥 ) + ( 𝑓 ‘ 𝑦 ) ) ) ) } ) |