This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The negative of an irreducible element is irreducible. (Contributed by Mario Carneiro, 4-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | irredn0.i | ⊢ 𝐼 = ( Irred ‘ 𝑅 ) | |
| irredneg.n | ⊢ 𝑁 = ( invg ‘ 𝑅 ) | ||
| Assertion | irredneg | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐼 ) → ( 𝑁 ‘ 𝑋 ) ∈ 𝐼 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | irredn0.i | ⊢ 𝐼 = ( Irred ‘ 𝑅 ) | |
| 2 | irredneg.n | ⊢ 𝑁 = ( invg ‘ 𝑅 ) | |
| 3 | eqid | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) | |
| 4 | eqid | ⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) | |
| 5 | eqid | ⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) | |
| 6 | simpl | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐼 ) → 𝑅 ∈ Ring ) | |
| 7 | 1 3 | irredcl | ⊢ ( 𝑋 ∈ 𝐼 → 𝑋 ∈ ( Base ‘ 𝑅 ) ) |
| 8 | 7 | adantl | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐼 ) → 𝑋 ∈ ( Base ‘ 𝑅 ) ) |
| 9 | 3 4 5 2 6 8 | ringnegr | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐼 ) → ( 𝑋 ( .r ‘ 𝑅 ) ( 𝑁 ‘ ( 1r ‘ 𝑅 ) ) ) = ( 𝑁 ‘ 𝑋 ) ) |
| 10 | eqid | ⊢ ( Unit ‘ 𝑅 ) = ( Unit ‘ 𝑅 ) | |
| 11 | 10 5 | 1unit | ⊢ ( 𝑅 ∈ Ring → ( 1r ‘ 𝑅 ) ∈ ( Unit ‘ 𝑅 ) ) |
| 12 | 10 2 | unitnegcl | ⊢ ( ( 𝑅 ∈ Ring ∧ ( 1r ‘ 𝑅 ) ∈ ( Unit ‘ 𝑅 ) ) → ( 𝑁 ‘ ( 1r ‘ 𝑅 ) ) ∈ ( Unit ‘ 𝑅 ) ) |
| 13 | 11 12 | mpdan | ⊢ ( 𝑅 ∈ Ring → ( 𝑁 ‘ ( 1r ‘ 𝑅 ) ) ∈ ( Unit ‘ 𝑅 ) ) |
| 14 | 13 | adantr | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐼 ) → ( 𝑁 ‘ ( 1r ‘ 𝑅 ) ) ∈ ( Unit ‘ 𝑅 ) ) |
| 15 | 1 10 4 | irredrmul | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐼 ∧ ( 𝑁 ‘ ( 1r ‘ 𝑅 ) ) ∈ ( Unit ‘ 𝑅 ) ) → ( 𝑋 ( .r ‘ 𝑅 ) ( 𝑁 ‘ ( 1r ‘ 𝑅 ) ) ) ∈ 𝐼 ) |
| 16 | 14 15 | mpd3an3 | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐼 ) → ( 𝑋 ( .r ‘ 𝑅 ) ( 𝑁 ‘ ( 1r ‘ 𝑅 ) ) ) ∈ 𝐼 ) |
| 17 | 9 16 | eqeltrrd | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐼 ) → ( 𝑁 ‘ 𝑋 ) ∈ 𝐼 ) |