This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The negative of an irreducible element is irreducible. (Contributed by Mario Carneiro, 4-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | irredn0.i | |- I = ( Irred ` R ) |
|
| irredneg.n | |- N = ( invg ` R ) |
||
| Assertion | irredneg | |- ( ( R e. Ring /\ X e. I ) -> ( N ` X ) e. I ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | irredn0.i | |- I = ( Irred ` R ) |
|
| 2 | irredneg.n | |- N = ( invg ` R ) |
|
| 3 | eqid | |- ( Base ` R ) = ( Base ` R ) |
|
| 4 | eqid | |- ( .r ` R ) = ( .r ` R ) |
|
| 5 | eqid | |- ( 1r ` R ) = ( 1r ` R ) |
|
| 6 | simpl | |- ( ( R e. Ring /\ X e. I ) -> R e. Ring ) |
|
| 7 | 1 3 | irredcl | |- ( X e. I -> X e. ( Base ` R ) ) |
| 8 | 7 | adantl | |- ( ( R e. Ring /\ X e. I ) -> X e. ( Base ` R ) ) |
| 9 | 3 4 5 2 6 8 | ringnegr | |- ( ( R e. Ring /\ X e. I ) -> ( X ( .r ` R ) ( N ` ( 1r ` R ) ) ) = ( N ` X ) ) |
| 10 | eqid | |- ( Unit ` R ) = ( Unit ` R ) |
|
| 11 | 10 5 | 1unit | |- ( R e. Ring -> ( 1r ` R ) e. ( Unit ` R ) ) |
| 12 | 10 2 | unitnegcl | |- ( ( R e. Ring /\ ( 1r ` R ) e. ( Unit ` R ) ) -> ( N ` ( 1r ` R ) ) e. ( Unit ` R ) ) |
| 13 | 11 12 | mpdan | |- ( R e. Ring -> ( N ` ( 1r ` R ) ) e. ( Unit ` R ) ) |
| 14 | 13 | adantr | |- ( ( R e. Ring /\ X e. I ) -> ( N ` ( 1r ` R ) ) e. ( Unit ` R ) ) |
| 15 | 1 10 4 | irredrmul | |- ( ( R e. Ring /\ X e. I /\ ( N ` ( 1r ` R ) ) e. ( Unit ` R ) ) -> ( X ( .r ` R ) ( N ` ( 1r ` R ) ) ) e. I ) |
| 16 | 14 15 | mpd3an3 | |- ( ( R e. Ring /\ X e. I ) -> ( X ( .r ` R ) ( N ` ( 1r ` R ) ) ) e. I ) |
| 17 | 9 16 | eqeltrrd | |- ( ( R e. Ring /\ X e. I ) -> ( N ` X ) e. I ) |