This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Member of the domain of the least upper bound function of a poset. (Contributed by Zhi Wang, 28-Sep-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lubeldm2d.b | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐾 ) ) | |
| lubeldm2d.l | ⊢ ( 𝜑 → ≤ = ( le ‘ 𝐾 ) ) | ||
| lubeldm2d.u | ⊢ ( 𝜑 → 𝑈 = ( lub ‘ 𝐾 ) ) | ||
| lubeldm2d.p | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( 𝜓 ↔ ( ∀ 𝑦 ∈ 𝑆 𝑦 ≤ 𝑥 ∧ ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑆 𝑦 ≤ 𝑧 → 𝑥 ≤ 𝑧 ) ) ) ) | ||
| lubeldm2d.k | ⊢ ( 𝜑 → 𝐾 ∈ Poset ) | ||
| Assertion | lubeldm2d | ⊢ ( 𝜑 → ( 𝑆 ∈ dom 𝑈 ↔ ( 𝑆 ⊆ 𝐵 ∧ ∃ 𝑥 ∈ 𝐵 𝜓 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lubeldm2d.b | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐾 ) ) | |
| 2 | lubeldm2d.l | ⊢ ( 𝜑 → ≤ = ( le ‘ 𝐾 ) ) | |
| 3 | lubeldm2d.u | ⊢ ( 𝜑 → 𝑈 = ( lub ‘ 𝐾 ) ) | |
| 4 | lubeldm2d.p | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( 𝜓 ↔ ( ∀ 𝑦 ∈ 𝑆 𝑦 ≤ 𝑥 ∧ ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑆 𝑦 ≤ 𝑧 → 𝑥 ≤ 𝑧 ) ) ) ) | |
| 5 | lubeldm2d.k | ⊢ ( 𝜑 → 𝐾 ∈ Poset ) | |
| 6 | eqid | ⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) | |
| 7 | eqid | ⊢ ( le ‘ 𝐾 ) = ( le ‘ 𝐾 ) | |
| 8 | eqid | ⊢ ( lub ‘ 𝐾 ) = ( lub ‘ 𝐾 ) | |
| 9 | biid | ⊢ ( ( ∀ 𝑦 ∈ 𝑆 𝑦 ( le ‘ 𝐾 ) 𝑥 ∧ ∀ 𝑧 ∈ ( Base ‘ 𝐾 ) ( ∀ 𝑦 ∈ 𝑆 𝑦 ( le ‘ 𝐾 ) 𝑧 → 𝑥 ( le ‘ 𝐾 ) 𝑧 ) ) ↔ ( ∀ 𝑦 ∈ 𝑆 𝑦 ( le ‘ 𝐾 ) 𝑥 ∧ ∀ 𝑧 ∈ ( Base ‘ 𝐾 ) ( ∀ 𝑦 ∈ 𝑆 𝑦 ( le ‘ 𝐾 ) 𝑧 → 𝑥 ( le ‘ 𝐾 ) 𝑧 ) ) ) | |
| 10 | 6 7 8 9 5 | lubeldm2 | ⊢ ( 𝜑 → ( 𝑆 ∈ dom ( lub ‘ 𝐾 ) ↔ ( 𝑆 ⊆ ( Base ‘ 𝐾 ) ∧ ∃ 𝑥 ∈ ( Base ‘ 𝐾 ) ( ∀ 𝑦 ∈ 𝑆 𝑦 ( le ‘ 𝐾 ) 𝑥 ∧ ∀ 𝑧 ∈ ( Base ‘ 𝐾 ) ( ∀ 𝑦 ∈ 𝑆 𝑦 ( le ‘ 𝐾 ) 𝑧 → 𝑥 ( le ‘ 𝐾 ) 𝑧 ) ) ) ) ) |
| 11 | 3 | dmeqd | ⊢ ( 𝜑 → dom 𝑈 = dom ( lub ‘ 𝐾 ) ) |
| 12 | 11 | eleq2d | ⊢ ( 𝜑 → ( 𝑆 ∈ dom 𝑈 ↔ 𝑆 ∈ dom ( lub ‘ 𝐾 ) ) ) |
| 13 | 1 | sseq2d | ⊢ ( 𝜑 → ( 𝑆 ⊆ 𝐵 ↔ 𝑆 ⊆ ( Base ‘ 𝐾 ) ) ) |
| 14 | 2 | breqd | ⊢ ( 𝜑 → ( 𝑦 ≤ 𝑥 ↔ 𝑦 ( le ‘ 𝐾 ) 𝑥 ) ) |
| 15 | 14 | ralbidv | ⊢ ( 𝜑 → ( ∀ 𝑦 ∈ 𝑆 𝑦 ≤ 𝑥 ↔ ∀ 𝑦 ∈ 𝑆 𝑦 ( le ‘ 𝐾 ) 𝑥 ) ) |
| 16 | 2 | breqd | ⊢ ( 𝜑 → ( 𝑦 ≤ 𝑧 ↔ 𝑦 ( le ‘ 𝐾 ) 𝑧 ) ) |
| 17 | 16 | ralbidv | ⊢ ( 𝜑 → ( ∀ 𝑦 ∈ 𝑆 𝑦 ≤ 𝑧 ↔ ∀ 𝑦 ∈ 𝑆 𝑦 ( le ‘ 𝐾 ) 𝑧 ) ) |
| 18 | 2 | breqd | ⊢ ( 𝜑 → ( 𝑥 ≤ 𝑧 ↔ 𝑥 ( le ‘ 𝐾 ) 𝑧 ) ) |
| 19 | 17 18 | imbi12d | ⊢ ( 𝜑 → ( ( ∀ 𝑦 ∈ 𝑆 𝑦 ≤ 𝑧 → 𝑥 ≤ 𝑧 ) ↔ ( ∀ 𝑦 ∈ 𝑆 𝑦 ( le ‘ 𝐾 ) 𝑧 → 𝑥 ( le ‘ 𝐾 ) 𝑧 ) ) ) |
| 20 | 1 19 | raleqbidv | ⊢ ( 𝜑 → ( ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑆 𝑦 ≤ 𝑧 → 𝑥 ≤ 𝑧 ) ↔ ∀ 𝑧 ∈ ( Base ‘ 𝐾 ) ( ∀ 𝑦 ∈ 𝑆 𝑦 ( le ‘ 𝐾 ) 𝑧 → 𝑥 ( le ‘ 𝐾 ) 𝑧 ) ) ) |
| 21 | 15 20 | anbi12d | ⊢ ( 𝜑 → ( ( ∀ 𝑦 ∈ 𝑆 𝑦 ≤ 𝑥 ∧ ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑆 𝑦 ≤ 𝑧 → 𝑥 ≤ 𝑧 ) ) ↔ ( ∀ 𝑦 ∈ 𝑆 𝑦 ( le ‘ 𝐾 ) 𝑥 ∧ ∀ 𝑧 ∈ ( Base ‘ 𝐾 ) ( ∀ 𝑦 ∈ 𝑆 𝑦 ( le ‘ 𝐾 ) 𝑧 → 𝑥 ( le ‘ 𝐾 ) 𝑧 ) ) ) ) |
| 22 | 21 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( ( ∀ 𝑦 ∈ 𝑆 𝑦 ≤ 𝑥 ∧ ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑆 𝑦 ≤ 𝑧 → 𝑥 ≤ 𝑧 ) ) ↔ ( ∀ 𝑦 ∈ 𝑆 𝑦 ( le ‘ 𝐾 ) 𝑥 ∧ ∀ 𝑧 ∈ ( Base ‘ 𝐾 ) ( ∀ 𝑦 ∈ 𝑆 𝑦 ( le ‘ 𝐾 ) 𝑧 → 𝑥 ( le ‘ 𝐾 ) 𝑧 ) ) ) ) |
| 23 | 4 22 | bitrd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( 𝜓 ↔ ( ∀ 𝑦 ∈ 𝑆 𝑦 ( le ‘ 𝐾 ) 𝑥 ∧ ∀ 𝑧 ∈ ( Base ‘ 𝐾 ) ( ∀ 𝑦 ∈ 𝑆 𝑦 ( le ‘ 𝐾 ) 𝑧 → 𝑥 ( le ‘ 𝐾 ) 𝑧 ) ) ) ) |
| 24 | 23 | pm5.32da | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐵 ∧ 𝜓 ) ↔ ( 𝑥 ∈ 𝐵 ∧ ( ∀ 𝑦 ∈ 𝑆 𝑦 ( le ‘ 𝐾 ) 𝑥 ∧ ∀ 𝑧 ∈ ( Base ‘ 𝐾 ) ( ∀ 𝑦 ∈ 𝑆 𝑦 ( le ‘ 𝐾 ) 𝑧 → 𝑥 ( le ‘ 𝐾 ) 𝑧 ) ) ) ) ) |
| 25 | 1 | eleq2d | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐵 ↔ 𝑥 ∈ ( Base ‘ 𝐾 ) ) ) |
| 26 | 25 | anbi1d | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐵 ∧ ( ∀ 𝑦 ∈ 𝑆 𝑦 ( le ‘ 𝐾 ) 𝑥 ∧ ∀ 𝑧 ∈ ( Base ‘ 𝐾 ) ( ∀ 𝑦 ∈ 𝑆 𝑦 ( le ‘ 𝐾 ) 𝑧 → 𝑥 ( le ‘ 𝐾 ) 𝑧 ) ) ) ↔ ( 𝑥 ∈ ( Base ‘ 𝐾 ) ∧ ( ∀ 𝑦 ∈ 𝑆 𝑦 ( le ‘ 𝐾 ) 𝑥 ∧ ∀ 𝑧 ∈ ( Base ‘ 𝐾 ) ( ∀ 𝑦 ∈ 𝑆 𝑦 ( le ‘ 𝐾 ) 𝑧 → 𝑥 ( le ‘ 𝐾 ) 𝑧 ) ) ) ) ) |
| 27 | 24 26 | bitrd | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐵 ∧ 𝜓 ) ↔ ( 𝑥 ∈ ( Base ‘ 𝐾 ) ∧ ( ∀ 𝑦 ∈ 𝑆 𝑦 ( le ‘ 𝐾 ) 𝑥 ∧ ∀ 𝑧 ∈ ( Base ‘ 𝐾 ) ( ∀ 𝑦 ∈ 𝑆 𝑦 ( le ‘ 𝐾 ) 𝑧 → 𝑥 ( le ‘ 𝐾 ) 𝑧 ) ) ) ) ) |
| 28 | 27 | rexbidv2 | ⊢ ( 𝜑 → ( ∃ 𝑥 ∈ 𝐵 𝜓 ↔ ∃ 𝑥 ∈ ( Base ‘ 𝐾 ) ( ∀ 𝑦 ∈ 𝑆 𝑦 ( le ‘ 𝐾 ) 𝑥 ∧ ∀ 𝑧 ∈ ( Base ‘ 𝐾 ) ( ∀ 𝑦 ∈ 𝑆 𝑦 ( le ‘ 𝐾 ) 𝑧 → 𝑥 ( le ‘ 𝐾 ) 𝑧 ) ) ) ) |
| 29 | 13 28 | anbi12d | ⊢ ( 𝜑 → ( ( 𝑆 ⊆ 𝐵 ∧ ∃ 𝑥 ∈ 𝐵 𝜓 ) ↔ ( 𝑆 ⊆ ( Base ‘ 𝐾 ) ∧ ∃ 𝑥 ∈ ( Base ‘ 𝐾 ) ( ∀ 𝑦 ∈ 𝑆 𝑦 ( le ‘ 𝐾 ) 𝑥 ∧ ∀ 𝑧 ∈ ( Base ‘ 𝐾 ) ( ∀ 𝑦 ∈ 𝑆 𝑦 ( le ‘ 𝐾 ) 𝑧 → 𝑥 ( le ‘ 𝐾 ) 𝑧 ) ) ) ) ) |
| 30 | 10 12 29 | 3bitr4d | ⊢ ( 𝜑 → ( 𝑆 ∈ dom 𝑈 ↔ ( 𝑆 ⊆ 𝐵 ∧ ∃ 𝑥 ∈ 𝐵 𝜓 ) ) ) |